Oncology
The first-in-class CDK4/6 inhibitor[^1] for postmenopausal women with ER+/HER2-metastatic breast cancer (mBC), in combination with letrozole as initial endocrine-based therapy.[^2]

INDICATIONS:
Palbociclib is indicated in combination with Letrozole for the treatment of postmenopausal women with ER+/HER2- metastatic breast cancer (mBC), in combination with letrozole as initial endocrine-based therapy.[^2]

SIDE EFFECTS:
Neutropenia; leukopenia; anemia; thrombocytopenia; upper respiratory infections; nausea; vomiting; diarrhea; stomatitis; increased cholesterol; increased triglycerides; diabetes; fatigue; weight gain; hypertension; headache; dizziness; arthralgia; myalgia; nasopharyngitis; upper respiratory tract infection; injection site reactions. Some adverse reactions may require dose modification. Refer to the Package insert for complete recommendation.

WARNINGS & PRECAUTIONS:
- Palbociclib should be taken with food in combination with letrozole 2.5 mg once daily given continuously. Management of some adverse reactions may require dose modification. Refer to the Package insert for complete recommendation.
- CONTRAINDICATIONS: Patients who are hypersensitive to this drug or to any ingredient in the formulation or component of the container.

INTERACTIONS:
- Proton pump inhibitors under fasted conditions. CYP3A inhibitors, substrates and inducers; Antacids; Grapefruit, grapefruit juice, and products containing grapefruit extract; St. John’s wort. Refer to the full prescribing information for details.

DERMATOLOGY:

CONTRAINDICATIONS:
Patients who are hypersensitive to this drug or to any ingredient in the formulation or component of the container. Refer to the Package insert for complete recommendation. GT Interval Prolongation: Palbociclib may induce QT prolongation. Infections: Monitor patients for signs and symptoms of infection and treat as medically appropriate. Physicians should be aware of the increased risk of infection with Palbociclib and should inform patients to promptly report any episodes of fever. Monitor patients for signs and symptoms of pulmonary embolism and treat as medically appropriate. ([Please refer to the full prescribing information for details](https://www.pfizer.com)).
Contents

Editorial
- Editorial
 Dr Victor HSUE

Medical Bulletin
- Recent Advances in the Management of Advanced/Metastatic Non-small-cell Lung Cancer
 Dr Victor Ho-fun LEE
- MCHK CME Programme Self-assessment Questions
 Dr Darren MC POON
- Contemporary Management of Metastatic Prostate Cancer
 Dr Darren MC POON
- Management of Advanced Gastric Cancer
 Dr Wing-lok CHAN & Dr Ka-on LAM
- Hormonal Management of Advanced Carcinoma of the Breast
 Dr Joyce Siu-yu WONG

Lifestyle
- Lifestyle But Not Food Alone to Prevent Cancer
 Dr Victor HSUE

Dermatology Quiz
- Dermatology Quiz
 Dr Lai-yin CHONG

Federation News

Medical Diary of September

Calendar of Events

Disclaimer
All materials published in the Hong Kong Medical Diary represent the opinions of the authors responsible for the articles and do not reflect the official views or policy of the Federation of Medical Societies of Hong Kong, member societies or the publisher.

Publication of an advertisement in the Hong Kong Medical Diary does not constitute endorsement or approval of the product or service promoted or of any claims made by the advertisers with respect to such products or services.

The Federation of Medical Societies of Hong Kong and the Hong Kong Medical Diary assume no responsibility for any injury and/or damage to persons or property arising from any use of execution of any methods, treatments, therapy, operations, instructions, ideas contained in the printed articles. Because of rapid advances in medicine, independent verification of diagnoses, treatment method and drug dosage should be made.

The Cover Shot

This is aerial photo taken by drone in June, 2018 in Muskoka, central Ontario.

Muskoka extends from Georgian Bay in the west, to the northern tip of Lake Couchiching in the south, to the western border of Algonquin Provincial Park in the east. Located approximately a two-hour car drive north of Toronto. Muskoka is spectacular at all times of the year, it is particularly renowned for its beautifully rugged landscape, it explodes with color during September and October, bursting with vibrant reds, yellows and oranges.

Dr Victor HSUE
MBBS (HK), FRCP (UK), FHKCR, FRCPC, FHKAM (Radiology), DABR (Radiation Onc), DABHFM
Specialist in Clinical Oncology Consultant,
The University of Hong Kong-Shenzhen Hospital
It has been some time since the last issue on Clinical Oncology in The Hong Kong Medical Diary. During this period there have been tremendous changes in this field and the most encouraging progress is the birth and development of an era of immuno-oncology (IO). IO revolutionises the whole arena of treatment and prognosis in the management of both solid tumours and also haematological malignancies.

Lung cancer mortality in Hong Kong remains the highest among all cancers at more than 4,000 deaths in 2015. However, with the use of new targeted agents and immuno-oncology drugs, both the disease-free survival and quality of life of the patients have been much improved. In this issue, Dr Victor HF Lee will illustrate the latest management of non-small cell lung cancer including the new targeted agents and IO drugs.

Hormonal treatment of breast cancer has been around for more than a century since Beatson performed a bilateral oophorectomy on a woman with advanced disease on June 15, 1895. Tamoxifen has been in use for more than half a century. Since the development of aromatase inhibitors about 25 years, further advances in hormonal treatment have been slow. Fortunately, in the past few years, various studies on the use of m-Tor inhibitors and CDK 4/6 inhibitors on metastatic breast cancer have been published. Different combinations of hormonal treatment have now become the new standard of treatment. Dr Joyce SY Wong will review the most recent treatments, which can spare many patients with advanced disease from chemotherapy.

In Hong Kong there has been continuous increase in the incidence of prostate cancer in the last four decades. It is now the third most common cancer with more than 1,800 new cases in 2015. Like breast cancer, it is hormonal sensitive and there are new advances and major studies published in the last few years showing improved survival. Dr Darren MC Poon will have a detailed discussion on these issues, incorporating novel treatments on advanced-stage disease.

Finally, there will be a discussion of advanced-stage gastric cancer by Dr Lam Ka-On and Dr Chan Wing-Lo. This is a difficult condition to treat, as most patients will have poor performance. The authors will lead us through the several lines of treatment that can be offered nowadays. This will include some new chemotherapeutic, targeted therapy and to immunotherapeutic agents, all serving to extend the patients survival and improve their quality of life.

While there are many new developments in treatment, myths about food and cancer persist. There will be a brief update on these issues. Unfortunately there are too many scams in the media particularly on the internet, which makes it difficult even for health care workers to find the truth. A good resource of information can be found in the third edition of Diet, Nutrition, Physical Activity and Cancer: a Global Perspective released in 2018. It is available on Internet on the World Cancer Research Fund web site: https://www.wcrf.org.

I hope it will not be too long before we update you again on the advancing edge of treatment options for various malignant conditions.
NOW AVAILABLE in HK

The 1st and only aPD-L1 cancer immunotherapy (CIT) approved in HK

► Unprecedented mOS - 13.8 months in previously treated NSCLC ALL-COMERS populations¹
► 57% 1-year survival and 15.9 months mOS for 1L cis-ineligible mUC patient²
► Convenient dosing¹

Abbreviated Product Information
TECENTRIQ® SOLUTION FOR INFUSION 120MG/20ML

Indications: Indicated for the treatment of patients with metastatic non-small cell lung cancer (NSCLC) with disease progression following platinum-based chemotherapy, or within 12 months of neoadjuvant or adjuvant chemotherapy. TECENTRIQ® is contraindicated for the treatment of patients with metastatic renal cell carcinoma (mRCC) who are in the clinical trial setting. TECENTRIQ® is indicated for the treatment of patients with metastatic non-small cell lung cancer (NSCLC) with disease progression following platinum-containing chemotherapy, or within 12 months of neoadjuvant or adjuvant chemotherapy.

Dosage and Administration: The recommended dose of TECENTRIQ® is 1200 mg administered as an intravenous infusion over 60 minutes every 3 weeks until disease progression or unacceptable toxicity. The maximum recommended dose is 1200 mg administered as an intravenous infusion over 60 minutes every 3 weeks.

Adverse Reactions: Common adverse reactions: Injection site reaction, tiredness, diarrhea, nausea, vomiting, rash, cough, arthralgia, musculoskeletal pain, back pain, dyspnea, lymphopenia, and anxiety.

References:

Roche Hong Kong Limited
24/F, Lee Garden Two, 2038 Yin Ping Road, Causeway Bay, Hong Kong
Tel: +852 2722 2232 Fax: +852 2787 6557

Tecentriq®
Engineered to Endure
atezolizumab
Certificate Course on Clinical Cytogenetics and Genetics 2018

Jointly organised by

- The Federation of Medical Societies of Hong Kong
- Hong Kong Society of Cytogenetics

Objectives:

To have a better understanding on Clinical Cytogenetics and Genetics

<table>
<thead>
<tr>
<th>Date</th>
<th>Topics</th>
<th>Speakers</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 Oct</td>
<td>Human Chromosomes and their identification</td>
<td>Dr. SIU Lai Ping, Lisa
Scientific Officer, Queen Elizabeth Hospital</td>
</tr>
<tr>
<td>19 Oct</td>
<td>Genetic diseases, genetic ethics and genetic counselling</td>
<td>Dr. Lam Tek Sum, Stephen
Cytogenetic Specialist, Hong Kong Sanatorium & Hospital</td>
</tr>
<tr>
<td>26 Oct</td>
<td>Cytogenetics in Prenatal Diagnosis</td>
<td>Mr. Chan Wing Kwong
Consultant Clinical Geneticist, Hong Kong Sanatorium & Hospital</td>
</tr>
<tr>
<td>2 Nov</td>
<td>New Genetic Methods in IVF</td>
<td>Dr. Chan Tsun Leung, Chris
Molecular Geneticist, Hong Kong Sanatorium & Hospital</td>
</tr>
<tr>
<td>9 Nov</td>
<td>Cytogenetics in Blood Cancers</td>
<td>Dr. WONG Wai Shan
Hematology Consultant, Queen Elizabeth Hospital</td>
</tr>
<tr>
<td>16 Nov</td>
<td>Genetic tests and personalized medicine</td>
<td>Dr. MA Shiu Kwan, Edmond
Hematology Consultant and Pathology Lab In-Charge, Hong Kong Sanatorium & Hospital</td>
</tr>
</tbody>
</table>

Date: 12, 19, 26 October & 2, 9, 16 November 2018 (Every Friday)

Time: 7:00 pm – 8:30 pm

Venue: Lecture Hall, 4/F., Duke of Windsor Social Service Building, 15 Hennessy Road, Wanchai, Hong Kong

Language Media: Cantonese (Supplemented with English; course materials are in Chinese/English)

Course Fee: HK$750 (6 sessions)

Certificate: Awarded to participants with a minimum attendance of 70%

Enquiry: The Secretariat of The Federation of Medical Societies of Hong Kong
- Tel.: 2527 8898
- Fax: 2665 0345
- Email: info@fmshk.org

CME / CPD / CNE Accreditation in application

Application form can be downloaded from website: http://www.fmshk.org
Recent Advances in the Management of Advanced/Metastatic Non-small-cell Lung Cancer

Dr Victor Ho-fun LEE

MBBS (HK), MD (HK), FRCR, FHKCR, FHKAM (Radiology)

Clinical Associate Professor
Department of Clinical Oncology, The University of Hong Kong
Consultant, Clinical Oncology Centre, The University of Hong Kong-Shenzhen Hospital

This article has been selected by the Editorial Board of the Hong Kong Medical Diary for participants in the CME programme of the Medical Council of Hong Kong (MCHK) to complete the following self-assessment questions in order to be awarded 1 CME credit under the programme upon returning the completed answer sheet to the Federation Secretariat on or before 30 September 2018.

Introduction

Lung cancer is the most common cancer worldwide and the second most common in Hong Kong, of which, non-small-cell lung cancer (NSCLC) constitutes about 80% of all cases of lung cancer while the rest includes small-cell lung cancer, lymphepithelioma-like carcinoma, neuroendocrine tumours, primary lymphoma and sarcoma, etc. Within NSCLC, adenocarcinoma is the predominant histology, followed by squamous cell carcinoma and large cell neuroendocrine carcinoma. Histological typing is crucial as the treatment of choice varies based on the different genetic aberrations within each histological phenotype. Twenty years ago, systemic platinum-based doublet chemotherapy was the only drug of choice for stage IV NSCLC. The clinical benefit unfortunately was meagre if not none, let alone the chemotherapy-related toxicities and the detriment to quality of life. The median overall survival in that era was just between 6 and 9 months despite aggressive treatment. For the past 20 years, treatment for metastatic stage IV NSCLC has gone through enormous breakthrough. Discovery of driver and actionable mutations has led to the rapid development of tyrosine kinase inhibitors, which have been proven to result in significant improvement of progression-free survival (PFS), overall survival (OS) and probably as importantly, quality of life as compared to traditional systemic chemotherapy as first-line or subsequent line therapy for patients whose tumours harbour driver mutations. More recently, the unravelling of the intricate interplay between the host immune system and tumour cells has prompted the development of immune checkpoint inhibitors which are shown to be more beneficial when used alone, or in combination with systemic chemotherapy when compared to systemic chemotherapy as first-line treatment for stage IV disease. Similarly, treatment options for stage III locally advanced NSCLC have become more diversified, from the traditional 2-dimensional radiotherapy concurrent with the toxic chemotherapy, to concurrent chemoradiation with the contemporary radiation technique and the use of immune checkpoint inhibitors as consolidation therapy following concurrent chemoradiation.

All these major milestones of achievement in customised and personalised therapies have successfully preserved the quality of life and prolonged the median survival of these patients to more than three years nowadays. In this article, an overview of the latest management paradigm this once-thought deadly malignancy is presented.

Overview

For the past 20 years, treatment outcomes and survival of stage IV NSCLC have tremendously improved, mainly attributed by the discovery of gene/receptor mutations including epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), ROS-1, MET, BRAF, etc and the identification of the immune checkpoints responsible for tumour evasion from the host immune system. The discovery and presence of these somatic driver genetic aberrations/mutations is definitely more clinically important and relevant to Asian patients, since half of the never-smoking patients with pulmonary adenocarcinoma have such actionable mutations as compared to only one fourth of patients in the Western countries (Fig 1). EGFR mutations particularly on exon 19 (presented as
deletional mutation) and exon 21 (presented as L858R point mutation) are present in half of the Asian patients with pulmonary adenocarcinoma, whose uncontrolled autophosphorylation of the tyrosine kinase in the intracellular domain can be effectively halted by the customised tyrosine kinase inhibitors (TKIs) leading to tumour cell death. Likewise, the identification of the ALK gene rearrangement in about 5-7% of the lung cancer population has also prompted the emergence of effective TKIs as well. The clinical benefits and safety of these TKIs against EGFR and ALK mutations are further elaborated below.

Treatment for stage IV NSCLC with the epidermal growth factor receptor (EGFR) mutation

EGFR mutation is the most common actionable mutation in this locality and various generations of TKI have been evaluated extensively (Table 1).5-15 Gefitinib and erlotinib, as first generation TKIs, have once been regarded as the standard first-line treatment for EGFR-mutant NSCLC as shown in international and regional phase III randomised-controlled trials (RCT). The pivotal IPASS (Iressa Pan-Asia Study) trial which was led by Hong Kong and other Asian countries, was the first one showing the preferential benefits of improved PFS with gefitinib compared to systemic chemotherapy with paclitaxel and carboplatin for advanced EGFR-mutated pulmonary adenocarcinoma. Gefitinib and erlotinib were proven comparably effective in both Asian and Western populations in the respective phase III RCT with a median PFS between 9 and 13 months as compared to 5 to 6 months brought by chemotherapy. The objective response rate up to 70% with TKIs in contrast to about 40% with chemotherapy is definitely another advantage of TKIs in patients who wish to derive a rapid response for their symptomatic bulky tumours. The side effect profiles are also in favour of TKIs over chemotherapy: easier administration as oral agents together with less immunosuppression, anorexia, vomiting and constipation, at the expense of more but manageable acneiform rash, stomatitis, diarrhoea and liver function derangement.

<table>
<thead>
<tr>
<th>Trial</th>
<th>Reference</th>
<th>Drug</th>
<th>Number of patients</th>
<th>Objective response (%)</th>
<th>Median progression-free survival (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPASS</td>
<td>5</td>
<td>Gefitinib</td>
<td>1217</td>
<td>71.2</td>
<td>9.5</td>
</tr>
<tr>
<td>NEJ001</td>
<td>6</td>
<td>Gefitinib</td>
<td>230</td>
<td>73.7</td>
<td>10.8</td>
</tr>
<tr>
<td>WTJ20405</td>
<td>7</td>
<td>Gefitinib</td>
<td>177</td>
<td>62.1</td>
<td>9.2</td>
</tr>
<tr>
<td>OPTIMAL</td>
<td>8</td>
<td>Erlotinib</td>
<td>165</td>
<td>83.0</td>
<td>13.1</td>
</tr>
<tr>
<td>EURTAC</td>
<td>9</td>
<td>Erlotinib</td>
<td>174</td>
<td>61.0</td>
<td>9.7</td>
</tr>
<tr>
<td>LUX-Lung6</td>
<td>10</td>
<td>Afatinib</td>
<td>910</td>
<td>66.9</td>
<td>11.0</td>
</tr>
<tr>
<td>LUX-Lung7</td>
<td>11</td>
<td>Afatinib</td>
<td>319</td>
<td>70.0</td>
<td>11.0</td>
</tr>
<tr>
<td>ARCHER1050</td>
<td>12</td>
<td>Dacomitinib</td>
<td>452</td>
<td>75.0</td>
<td>14.7</td>
</tr>
<tr>
<td>FLAURA</td>
<td>14</td>
<td>Osimertinib</td>
<td>556</td>
<td>80.0</td>
<td>18.9</td>
</tr>
</tbody>
</table>

Recently second-generation TKIs (classified as such because of their irreversible binding to the tyrosine kinase domain as compared to the reversible binding in the first generation TKIs) including afatinib and dacomitinib were also found superior to chemotherapy and probably first-generation TKIs as first-line treatment for metastatic EGFR-mutated NSCLC as shown in combined analysis of LUX-Lung3 and LUX-Lung6 studies led by Asian institutions.16 The latest phase IIb LUX-Lung7 study comparing afatinib to gefitinib as first-line treatment showed a meagre improvement of PFS by 0.1 month (median 11.0 vs. 10.9 months, p=0.017).17 Similarly, a very recent phase III RCT comparing dacomitinib to gefitinib exhibited an improvement of PFS (median 14.7 months vs. 9.2 months, p<0.0001) and OS (median 34.1 months vs. 26.8 months, p=0.044) in the updated analysis.12,13 However such survival improvement is also accompanied by an increased incidence of treatment-related grade 3-4 adverse events including more acneiform rash, diarrhoea and liver function derangement when compared to the first-generation TKIs, leading to a higher and earlier need of treatment interruption and subsequent dose reduction.

Though long-term responders to these first- and second-generation TKIs may be occasionally noticed, acquired drug resistance eventually develops, which is believed to originate from the emergence of clones with the ability of generating genetic alterations leading to clonal survival under the selective pressure of the current TKI treatment. The most common mechanism of acquired resistance is the presence of somatic T790M mutation on exon 20 of EGFR, accounting for about 50–60% of known mutations of acquired TKI resistance.16-18 Third-generation TKIs are specially designed to curb the acquired T790M mutation. Of them, osimertinib has been so far the only approved TKI for T790M-mutant NSCLC after initial failure to earlier generations of TKI. The AURA3 phase III RCT, comparing osimertinib to platinum-based chemotherapy, showed an overwhelming PFS advantage (median 10.1 months vs. 4.4 months, p<0.001) as further treatment in those who developed T790M mutation after progression to gefitinib, erlotinib or afatinib.14

A more encouraging result is the release of FLAURA study, a phase III RCT comparing osimertinib with first-generation TKI as first-line treatment for stage IV EGFR-mutant NSCLC. This is first study demonstrating the superiority of osimertinib over the first-generation TKI as first-line treatment even in the absence of T790M mutation.15 This advantage was represented by an improvement of PFS from 10.2 months to 18.9 months (p<0.001). Of equal importance, osimertinib lacks the activity against wild-type EGFR, resulting in fewer rashes, diarrhoea and dry skin. One caution to note is the slightly increased incidence of non-fatal grade 1-3 prolonged QTc interval with osimertinib. To date, first-line treatment for stage IV EGFR-mutant NSCLC can be either first or second generation TKIs followed by osimertinib if T790M resistant mutation develops or upfront treatment with osimertinib, albeit meanwhile higher financial burden.

Other mechanisms of acquired resistance to TKIs include MET amplification, HER amplification/mutation, small cell transformation and rarely secondary mutations for instance BRAF mutation have been implicated.14,19,24 Re-
What science can do

We push the boundaries of science to deliver life changing medicines
biopsy of growing tumours or more recently plasma/fluid biopsy for whole-exome/whole genome sequencing by next-generation sequencing platforms to detect other novel/rare acquired mutations after progression despite TKI therapy has caught rising attention recently which can guide the oncologists and patients for the most appropriate subsequent therapy.36,37

Treatment for stage IV NSCLC with rearrangement of ALK gene

The second most important mutation for NSCLC is ALK rearrangement. They were first discovered and described in Japan that about 7% of their patients who harboured echinoderm microtubule associated protein like-4 (EML4) rearrangement with ALK forming a fusion oncogene (EML4-ALK), as a result of an inversion rearrangement from inv(2) (p21;p23).26,27 EML4 thus substitutes the extracellular and intramembranous parts of ALK and fuses with the juxta-membranous part.

ALK-directed targeted therapy has dramatically evolved for the past decade (Table 2). The first approved ALK inhibitor, crizotinib, has demonstrated promising anti-tumour activity against ALK-rearranged metastatic NSCLC in second-line setting after failure to first-line chemotherapy, producing a response rate of 65% and a median PFS of 7.7 months.28 Soon it was also proven effective in first-line setting in PROFILE 1014, producing a response rate of 74% for crizotinib versus 45% for chemotherapy and longer median PFS of 10.9 months (versus 7.0 months for chemotherapy).29 Furthermore, it was recently published as a planned subgroup analysis that the intracranial disease-control rates at 12 weeks (85% vs. 45%; p<0.001) and 24 weeks (56% vs. 25%; p=0.006) were significantly higher with crizotinib than with chemotherapy for patients with treated brain metastases.30 Nevertheless, crizotinib was found to have low penetration to the central nervous system compared to the more novel generations of ALK inhibitors as described below. Intriguingly, crizotinib was found to be active against MET and ROS-1 rearrangement, which occurs in about 1% of NSCLC.31,32 Therefore, it was FDA-approved for its use in ROS-1 rearranged metastatic NSCLC, as represented by its objective response rate of 72% and median PFS of 19.2 months in an expansion cohort of phase I study.33 Another caveat associated with crizotinib is the development of acquired drug resistance within 1 to 2 years of treatment despite an initial promising objective response.

Ceritinib as second-line treatment after failure to crizotinib has evolved rapidly. A phase I study (ASCEND-1) including 122 patients who had advanced ALK-positive NSCLC investigated the efficacy and safety of ceritinib.34 Among the 80 patients who failed crizotinib, ceritinib produced an objective response rate of 56%. The median PFS was 7.0 months for those who received ceritinib with daily dose 400 mg or higher. Furthermore, the intracranial disease control rate was 79% (15 out of 19 patients) in those without prior treatment with ALK inhibitor and 65% (49 out of 75 patients) in those previously pretreated with ALK inhibitor. Later it was also shown more efficacious than chemotherapy as first-line treatment with a median PFS of 16.6 months versus 8.1 months (p<0.00001) in ASCEND-4 study.35 However it also brings significant toxicities including gastrointestinal side effects (nausea, vomiting, diarrhoea), liver function derangement, photopsia and others which lead to frequent treatment suspension and subsequent dose reduction, when taken as a full dose (750 mg daily) in a fasting status. A recent randomised study comparing a lower dose of ceritinib (450mg daily) taken with a low-fat meal attained a similar plasma concentration but fewer gastrointestinal toxicities as compared to a full dose of 750 mg daily in a fasting status.36

Alectinib is another selective ALK TKI with high CNS penetration compared to crizotinib and active against many secondary mutations which confer resistance to crizotinib. A phase II trial demonstrated an objective response of 48% and a median PFS of 8.1 months in patients who received alectinib for their ALK-positive crizotinib-resistant NSCLC.37 The recent J-ALEX (using alectinib 300 mg twice daily dosing conducted in Japan) and ALEX (using alectinib 600 mg twice daily dosing conducted in countries outside Japan) trials all revealed a progression-free survival advantage (not reached for alectinib) over crizotinib (around 11 months) as first-line treatment, leading to approval by Food and Drug Administration (FDA) in the United States in this setting.38,39 Moreover, the side effects are much fewer and more tolerable with alectinib.

The patterns of drug resistance after failure to crizotinib are less predictable compared to that seen after TKIs for EGFR-mutant NSCLC, though many resistant mutations can be effectively tackled by newer generations of ALK TKIs. Other novel potent ALK inhibitors including brigatinib, lorlatinib, ensartinib (X-396) have been comprehensively investigated as subsequent therapy following crizotinib failure and first-line therapy and the study results are highly awaited.

<table>
<thead>
<tr>
<th>Trial</th>
<th>Reference</th>
<th>Drug</th>
<th>Number of patients</th>
<th>Objective response (%)</th>
<th>Median progression-free survival (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROFILE 1014</td>
<td>29</td>
<td>Crizotinib</td>
<td>343</td>
<td>74.0</td>
<td>10.9</td>
</tr>
<tr>
<td>ASCEND-4</td>
<td>35</td>
<td>Ceritinib</td>
<td>376</td>
<td>72.5</td>
<td>16.6</td>
</tr>
<tr>
<td>J-ALEX</td>
<td>38</td>
<td>Alectinib (300mg twice daily)</td>
<td>207</td>
<td>92.0</td>
<td>Not reached</td>
</tr>
<tr>
<td>ALEX</td>
<td>39</td>
<td>Alectinib (600mg twice daily)</td>
<td>303</td>
<td>82.9</td>
<td>Not reached</td>
</tr>
</tbody>
</table>

Treatment for stage IV NSCLC without actionable mutations

Platinum-based doublet chemotherapy has been the standard treatment for non-targetable stage IV NSCLC. Platinum combined with the newer agent pemetrexed in the induction phase followed by pemetrexed alone in the maintenance setting was proven better than with the older chemotherapeutic agents in non-squamous NSCLC.40 Addition of anti-vascular endothelial...
growth factor monoclonal antibody bevacizumab to chemotherapy in both induction and maintenance phase results in further improvement in PFS in non-squamous NSCLC.41,42

Immunotherapy for stage IV NSCLC

Immunotherapy has gradually emerged as a new hope of treatment for advanced NSCLC. The greatest breakthrough is the discovery of immune checkpoints which play an important role of immune evasion of tumour cells from T-cell surveillance in the host immune system. Of these immune checkpoint inhibitors, programmed death-1 (PD-1) on the cytotoxic T-cells and the programmed death-ligand 1 (PD-L1) on the tumour cells have been recently catching the oncologist’s attention, since their binding with each other can allow the tumour cells escape from the immune surveillance leading to tumour escape. The development of the monoclonal antibodies against these immune checkpoints can restore the immune surveillance which enhances tumour killing by the cytotoxic T-cells. Up to now, pembrolizumab (anti-PD1), nivolumab (anti-PD1) and atezolizumab (anti-PD-L1) are approved immunotherapeutic agents for stage IV NSCLC. In particular, pembrolizumab was shown to confer both PFS (10.3 months vs. 6.0 months, p<0.001) and OS (median not reached for both arms, p=0.005) benefit as first-line treatment in patients with advanced NSCLC whose PD-L1 expression on at least 50% of tumour cells and had no sensitising EGFR mutation and ALK translocation, compared to standard chemotherapy in KEYNOTE-024 trial.43 Very recently, pembrolizumab alone, or in combination with platinum-based chemotherapy as first-line treatment was shown to offer OS benefit across all PD-L1 expression categories for non-squamous metastatic NSCLC (KEYNOTE-042 & KEYNOTE-189), as presented in the Annual Meeting of American Society of Clinical Oncology (ASCO) this year.44 It is also superior to chemotherapy in terms of PFS and OS improvement for squamous metastatic NSCLC (KEYNOTE-407).

Nivolumab together with ipilimumab (a monoclonal antibody against another immune checkpoint called CTLA-4) also brought a prolongation of PFS in patients whose tumours showed high tumour mutation burden as confirmed by next-generation sequencing, compared to chemotherapy alone as first-line treatment (CheckMate227).45 Finally another PD-L1 inhibitor atezolizumab, when combined with bevacizumab and chemotherapy also significantly lengthened PFS and OS (19.2 months vs. 14.7 months, p=0.02) compared to bevacizumab and chemotherapy as first-line treatment (IMPower150).46 Therefore, the choices of immunotherapy as first-line treatment for stage IV NSCLC without actionable mutations have become diversified. They can also be used as second-line or later settings if not administered earlier. Though the common side effects are usually mild, serious grade 3-4 immune-related adverse events in less than 5% of patients including interstitial lung disease, hepatitis, colitis, nephropathy and hypopituitarism can occur, and require urgent attention, treatment interruption and appropriate medical intervention.

Treatment for stage III NSCLC

Management of stage III NSCLC has been always diversified and evolving. Adjuvant chemotherapy with or without radiation therapy is the standard post-operative treatment for pathological stage III disease. Treatment choices for unresectable stage III NSCLC include concurrent chemoradiation with or without induction/adjuvant chemotherapy, preoperative chemotherapy followed by surgery, preoperative chemoradiation followed by surgery. New agents with pemtrexed in combination with cisplatin as the concurrent backbone with radiation therapy brings few toxicities compared to the traditional etoposide and cisplatin doublets.47 Modern radiation techniques with intensity-modulated radiation therapy (IMRT) can better spare the lungs and the heart from unnecessary irradiation resulting in better treatment efficacy and safety.48 However, further radiation dose escalation from the standard 60 Gy to 74 Gy and the use of anti-EGFR monoclonal antibody could not be translated to a better survival.49

Adjuvant targeted therapy as post-operative treatment for resected stage III NSCLC with actionable mutations is being evaluated and the results will be available within a couple of years (ADJUVANT/CTONG1104 for gefitinib, ALCHEMIST for erlotinib and ADARA for osimertinib).50

Recently, the use of immune checkpoint inhibitor durvalumab (a PD-L1 monoclonal antibody) as consolidation therapy for 1 year following radical concurrent chemoradiation was shown to offer PFS benefit compared to concurrent chemoradiation alone (median 16.8 months vs. 5.6 months, p<0.0001). Mature data on OS and toxicity profile especially radiation pneumonitis/fibrosis are needed to confirm its long-term efficacy and safety.51

Summary

There has been an epoch-making breakthrough in managing locally advanced and metastatic NSCLC for the past two decades. The management paradigm becomes more personalised and it is hopeful that patients can derive a tailor-made management plan with their oncologists and families in the very near future.

References

1. Hong Kong Cancer Registry. Available at http://www3.ha.org.hk/cancerreg/

MCHK CME Programme Self-assessment Questions

Please read the article entitled “Recent Advances in the Management of Advanced/Metastatic Non-small-cell Lung Cancer” by Dr Victor Ho-fun LEE and complete the following self-assessment questions. Participants in the MCHK CME Programme will be awarded CME credit under the Programme for returning completed answer sheets via fax (2865 0345) or by mail to the Federation Secretariat on or before 30 September 2018. Answers to questions will be provided in the next issue of The Hong Kong Medical Diary.

Questions 1-10: Please answer T (true) or F (false)

1. Non-small-cell lung cancer is the most common type of lung cancer.
2. Among non-small-cell lung cancers in Hong Kong, squamous cell carcinoma is the most common histological type.
3. The incidence of epidermal growth factor receptor (EGFR) mutation in Asian populations is much higher than that in Western countries.
4. Re-arrangement of the anaplastic lymphoma kinase (ALK) gene is the most common actionable mutation of non-small-cell lung cancer in Asian populations.
5. BRAF is one of the actionable mutations in stage IV non-small-cell lung cancer.
6. Osimertinib is the most potent tyrosine-kinase inhibitor with the longest progression-free survival against EGFR-mutant stage IV non-small-cell lung cancer.
7. Crizotinib has better penetration into the central nervous system compared to systemic chemotherapy as first-line treatment for ALK-rearranged stage IV non-small-cell lung cancer.
8. Crizotinib has better penetration into the central nervous system compared to alectinib as first-line treatment for ALK-rearranged stage IV non-small-cell lung cancer.
9. Alectinib has worse toxicity profiles compared to crizotinib as first-line treatment for ALK-rearranged stage IV non-small-cell lung cancer.
10. Concurrent chemoradiation is one of the standard treatments for physically fit patients who have unresectable stage III non-small-cell lung cancer.

ANSWER SHEET FOR SEPTEMBER 2018

Please return the completed answer sheet to the Federation Secretariat on or before 30 September 2018 for documentation. 1 CME point will be awarded for answering the MCHK CME programme (for non-specialists) self-assessment questions.

Recent Advances in the Management of Advanced/Metastatic Non-small-cell Lung Cancer

Dr Victor Ho-fun LEE
MBBS (HK), MD (HK), FRCR, FHKCR, FHKAM (Radiology)
Clinical Associate Professor
Department of Clinical Oncology, The University of Hong Kong
Consultant, Clinical Oncology Centre, The University of Hong Kong-Shenzhen Hospital

Name (block letters):____________________________ HKMA No.: _______________ CDSHK No.: _______________
HKID No.: __ __ - __ __ __ __ X X (X) HKDU No.: _______________ HKAM No.: _______________
Contact Tel No.:_____________________________ MCHK No.: __________________ (for reference only)

Answers to August 2018 Issue

Managing Lower Urinary Tract Symptoms with Special Attention to Overactive Bladder in the Primary Care Setting

NOW APPROVED FOR ADVANCED RCC
RAPID, POWERFUL AND DURABLE
RESPONSE

THAT OFFERS SIGNIFICANT PROLONGATION OF THE MEDIAN PFS AT >14 MONTHS IN mRCC PATIENTS, IN COMBINATION WITH EVEROLIMUS

First combination

The first and only VEGFR/ FGFR/ mTOR combination with synergistic anti-angiogenic and antitumour activity for mRCC

Substantial PFS

14.6-months median PFS with LENVIMA + everolimus arm vs 5.5 months with everolimus alone (HR: 0.40, p=0.0005)

Powerful Response

43% ORR with LENVIMA + everolimus (including 2% complete response) vs 6% with everolimus. Median duration of response in combination treatment was 13 months

Clinically Meaningful OS Benefit

25.5-month median OS with LENVIMA + everolimus vs 15.4 months with everolimus alone (HR [95% CI]: 0.67 [0.42-1.08])

LENVIMA® (lenvatinib). Abbreviated Prescribing Information

Indication Renal Cell Carcinoma: LENVIMA is indicated in combination with everolimus for the treatment of patients with advanced RCC following one prior anti-angiogenic therapy. Differentiated Thyroid Cancer: LENVIMA is indicated for the treatment of patients with locally recurrent or metastatic, progressive, radiologically confirmed DTC. Presentation: Hard capsules 10mg and 40mg. Dosage and Administration: DCC: The recommended daily dose is 10mg as a single dose in combination with everolimus administered orally once a day. FTC: The recommended daily dose is 60mg as a single dose in combination with everolimus administered orally daily. Warnings and Precautions: Severe renal & hepatic impairment. Control BP prior to therapy & administer after 1 week of treatment. Therapy: 2 weeks for the first 2 months. 4 months thereafter. Monitor patients for clinical symptoms or signs of cardiac decompensation. Discontinue LENVIMA following an adverse renal event. Monitor liver function test prior to initial treatment, then every 2 weeks for the first 2 months. Discontinue LENVIMA if Grade 3 or 4 renal impairment, Grade 2 or greater GFR at baseline or Grade 3 or 4 renal impairment or Grade 4 GFR at baseline or Grade ≥3 abdominal pain or Grade ≥3 peripheral edema. Avoid concomitant use of other nephrotoxic drugs. Pregnancy Category D. Use in patients with other renal or hepatic impairment. Postmarketing Adverse Events: The most common adverse reactions (≥3%) observed in LENVIMA with everolimus were anemia, fatigue, diarrhea, AST/ALT升高, rash, appetite decreased, nausea, vomiting, constipation, hand-foot syndrome, hypertension, abdominal pain, cough, arthralgia/myalgia, decreased appetite, weight decreased, nasopharyngitis, phosphaturia, upper respiratory tract infection, hand-foot syndrome, headache, hypertension, abdominal pain, cough, rash, dyspnea, dysphonia, weight decreased, hemorrhagic events and proteinuria. Storage: To be stored under 30°C. Store in the original blister in order to protect from moisture. Packaging: LENVIMA capsules are supplied in cartons of 3 blister packs. Each carton contains 20 capsules of LENVIMA 10mg or 40mg capsules. Please refer to the Full Prescribing Information for details. Further information is available upon request. References: L. Nishio et al.: Lancet Oncol. 2016;17(11):e472-e478. 2. LENVIMA® Full product information

Eisai (Hong Kong) Company Ltd.
Unit 10/11, 10/F. Carina, 112-118, Mandarin Road, North Point, Hong Kong
Tel: (+852) 2556 6027 Fax: (+852) 2556 6042 Email: hko@eisai.com
Contemporary Management of Metastatic Prostate Cancer

Dr Darren MC POON
MBChB, FRCP, FHKCR, FHKAM (Radiology)
Consultant in Clinical Oncology
Department of Clinical Oncology, Prince of Wales Hospital

Introduction

The incidence of prostate cancer has dramatically increased in Hong Kong over the last decade. According to the 2015 Hong Kong Cancer Registry, prostate cancer is currently ranked the third commonest male cancer. The clinical management of patients with metastatic prostate cancer is challenging and the primary goals are extending their survival with symptoms alleviation and maintaining quality of life. The treatment paradigm of metastatic prostate cancer has been revolutionarily changed and the androgen-deprivation treatment (ADT) alone is no longer the standard of care currently. Enormous efforts in improving the treatment outcome in this group of patients have been rewarded with significant improvement in survival in the last 5 to 10 years. In this article, the latest advancement in the management of metastatic prostate cancer will be reviewed.

Metastatic prostate cancer without prior systemic treatment

Upfront chemotherapy and ADT
Continuous androgen-deprivation therapy (ADT), either in the form of surgical or medical castration, had been the gold standard for newly found metastatic prostate cancer from 1941 until 2015, when 2 landmark clinical trials (CHAARTED and STAMPEDE) showed that ADT combined with 6 courses of docetaxel improved survival. Docetaxel is a taxane that binds tubulin and stabilises microtubules, thereby inhibiting mitosis and androgen-receptor signalling by disrupting nuclear transport of the receptor. In 2005, the Eastern Cooperative Oncology Group (ECOG) initiated a trial comparing standard ADT with or without 6 cycles of docetaxel in patients with metastatic hormone-sensitive prostate cancer (mHSPC; the CHAARTED study). In a recent updated analysis with a median follow-up time of 53.7 months, the group reported a median overall survival (OS) for the combined treatment arm of 57.6 months compared with 47.2 months for ADT alone (hazard ratio [HR], 0.72; 95% CI, 0.59–0.89; p=0.0018). Subgroup analysis indicates that this survival benefit is significant primarily in the group of patients (513 patients) with high-volume disease, defined by the presence of visceral metastases and/or 4 or more bone lesions (≥ 1 appendicular lesions) (51.2 months for the combined arm vs 34.4 months for ADT alone; HR, 0.63; 95% CI, 0.50–0.79; p<0.001). The combined arm was superior with regard to secondary study endpoints, including time to the development of castration resistance (either by prostate-specific antigen or clinical progression) and time to clinical progression.

The STAMPEDE trial was started in 2005 to test the same chemo-hormonal hypothesis, and the results reported were similar to those of CHAARTED\(^1\). With a median follow-up of 43 months for 2,962 patients, the latest published report from STAMPEDE showed a significant OS difference in favour of the combined ADT + docetaxel arm (HR, 0.78; 95% CI, 0.66–0.93; p=0.006). The median OS was 81 months (range, 30 months to not reached) for the combined arm vs 71 months (range, 32 months to not reached) for the ADT-alone arm. The combination arm also showed significantly improved failure-free survival. Toxicities observed in both CHAARTED and STAMPEDE included those previously reported with docetaxel and were mostly reversible.

These robust data have led to the incorporation of the upfront chemo-hormonal therapy as one of the treatment options for mHSPC in various treatment guidelines, including NCCN, EAU, NICE, etc. In Hong Kong, the chemo-hormonal therapy was introduced in early 2015. In a retrospective study conducted by the Hong Kong Society of Uro-Oncology (HKSUO), the preliminary efficacy, i.e. the time to castration-resistance, of chemo-hormonal therapy among patients with mHSPC in Hong Kong was comparable to the pivotal study (median time to castration-resistance: HKSUO vs CHAARTED, 19.5 vs 20.2 months). However, the high frequency of haematologic toxicities in Asian patients (the rates of grade 3 or 4 febrile neutropenia, neutropenia and anaemia were 12.5%, 40.6% and 3.1% respectively) highlights the importance of proper patient selection and pre-emptive use of granulocyte colony-stimulating factor\(^2\).

Upfront abiraterone and ADT
Abiraterone, a potent and irreversible inhibitor of cytochrome-P (CYP)-17 that blocks androgen synthesis, has been shown in large scale randomised trials to confer significant survival advantage over placebo in both chemo-naïve metastatic castration-resistant prostate cancer (mCRPC) patients and mCRPC patients with prior chemotherapy. We will present these trials in a subsequent section below. Similar to the success story of docetaxel, investigators attempted to push abiraterone more forward in the newly diagnosed metastatic prostate cancer setting, and to investigate the upfront combination abiraterone and ADT versus ADT alone in mHSPC in 2 large clinical trials, namely LATITUDE and STAMPEDE.
LATITUDE was a multicentre, double-blind, randomised, phase III trial conducted in 34 countries that compared abiraterone plus prednisone (5 mg once daily) with dual placebos in men with high-risk metastatic prostate cancer at the time of diagnosis. “High-risk” disease was defined in this trial as two or more of the following three features: Gleason score ≥ 8, ≥ 3 bone metastases, and/or visceral disease. The coprimary endpoints were overall survival and radiographic progression–free survival (rPFS).6

STAMPEDE is a multi-arm, multi-stage trial in men being given long-term ADT. As such, the trial has included multiple interventions in a group of men, which includes not only men presenting with metastatic disease, but also men with high-risk locally advanced and recurrent prostate cancer. The abiraterone comparison of STAMPEDE (arm G vs arm A) was an open-label trial comparing abiraterone plus prednisolone (5 mg once daily) with ADT alone. The primary endpoint was overall survival.5

Both trials have yielded striking and similar results, with 38% and 39% reductions in the risk of death in LATITUDE and STAMPEDE respectively, in men with metastatic disease. Neither trial has achieved sufficient follow-up to enable an estimate of the median survival gain, but informal extrapolation of the survival curves leads to an estimated median survival gain in excess of 20 months. The true magnitude of the survival gain in LATITUDE may be compromised by crossover after unblinding for those men who were still progression-free and receiving placebo.

Comparison between upfront abiraterone and docetaxel in combination with ADT in mHSPC

Up to now, there is no direct head-to-head randomised study to compare abiraterone versus docetaxel in combination with ADT in mHSPC. In the STAMPEDE study, there was an overlapping time from November 2011 to March 2013 when the patients receiving ADT could either be randomized into abiraterone or docetaxel. Using the data in this period of time, the direct and randomised comparative analysis of these two treatments in mHSPC showed no evidence of a difference in overall or prostate cancer-specific survival. Despite the similar effectiveness in these 2 promising treatment approaches, there remains a distinct difference. Firstly, the treatment with docetaxel, albeit having chemotherapy-related side effects, only takes 6 courses of 3-weekly treatment. In contrary, the abiraterone–prednisolone treatment will be continued until disease progression, implicating prolonged drug exposure. Secondly, there is a huge cost difference between abiraterone and docetaxel, which may bring in important considerations as far as financial burden is concerned.

In conclusion, from 2018, the androgen-deprivation therapy (ADT) should no longer be the standard of care for newly diagnosed metastatic prostate cancer, in particular to those with high-volume disease (visceral metastasis, or ≥4 bone metastases) or high risk features (2 out of 3 features: GS ≥8, visceral metastasis or ≥3 bone metastases). Abiraterone or docetaxel should be considered and offered to these patients in order to prolong the overall survival and delay the time to develop symptomatic disease or skeletal events.

Metastatic castration-resistant prostate cancer (mCRPC)

Despite the initially high response rate to androgen deprivation therapy (ADT), the majority of prostate cancers will develop castration resistance inevitably over time, mostly within the first year of ADT in men with metastatic disease. Docetaxel was the first life-prolonging drug in men with mCRPC, and therefore, it has been the standard therapy for mCRPC in combination with prednisone since 2004. In the last few years, several new options for the treatment of metastatic castration-resistant prostate cancer (mCRPC) have been approved: the CYP17 inhibitor abiraterone, the androgen receptor (AR) antagonist enzalutamide, the taxane cabazitaxel, and the alpha-emitter radium-223 for men with bone metastases. All these therapeutic agents have proven survival benefit for mCRPC in clinical phase III studies (Fig. 1).

Abiraterone

Abiraterone acetate is an inhibitor of CYP17A1 and targets both 17a-hydroxylase and 17,20-lyase activities, thereby inhibiting residual androgen biosynthesis. In the COU-AA-301 study, abiraterone (1000 mg po) and prednisolone (5 mg BD) were shown to prolong overall survival (OS) in mCRPC patients who had prior docetaxel (OS; 15.8 vs 11.2 months; hazard ratio [HR] 0.74; p<0.0001)6. In chemo-naive asymptomatic or mildly symptomatic mCRPC patients, abiraterone significantly prolonged the median OS in the abiraterone acetate group than in the placebo group (34.7 vs 30.3 months; HR 0.81; p=0.0033). Concurrent administration of low-dose prednisone (5 mg twice a day) with abiraterone is required to prevent hypertension, hypokalemia, and fluid retention resulting from adrenocorticotropic-generated mineralocorticoid excess. In the HKSUO’s retrospective study, OS after abiraterone in Hong Kong chemo-naive patient cohort (18.1 months) was considerably shorter than that reported in the COU-AA-302 trial (34.7 months), and the OS was particularly short in those with visceral metastases (2.8 months). Conversely, abiraterone was efficacious in post-chemo patients. Abiraterone resulted in comparable pain control in both groups of patients and the most common grade 3 or above toxicities were hypertension (6.9/5.8 %) and hypokalaemia (3.4/3.8 %) in our chemo-naive/post-chemo patients.

Enzalutamide

Enzalutamide is a second-generation, nonsteroidal
androgen-receptor (AR) inhibitor that affects the AR pathway in three ways: it binds to the AR with greater relative affinity than bicalutamide, reduces the efficiency of AR nuclear translocation, and impairs both DNA binding to androgen response elements and recruitment of coactivators. The AFFIRM trial (n = 1,199) evaluated enzalutamide 160 mg po vs. placebo after chemotherapy, with overall survival (OS) as the primary endpoint. The median OS with 95% confidence interval (CI) was 18.4 (17.3 – not reached) vs. 13.6 (11.3 – 15.8) months, with a resulting hazard ratio (HR) of 0.63 (95% CI: 0.53-0.75, p<0.001)7. The PREVAIL trial (n = 1,717) evaluated enzalutamide vs. placebo in chemo-naïve patients, with radiographic progression-free survival (rPFS) and OS as co-primary endpoints8. The resulting HR for enzalutamide vs. placebo for rPFS was 0.19 (95% CI: 0.15-0.23, p<0.001) and for OS was 0.71 (95% CI: 0.60 – 0.84, p<0.001). In the HKSUO’s retrospective study, we confirmed that earlier lines of enzalutamide treatment were associated with longer PFS and OS, more frequent PSA response, and less fatigue. The observed incidence of any fatigue (grade 1 or 2: 54.7%; grade 3 or 4: 9.4%) in the Hong Kong’s cohort was much higher than those reported in the AFFIRM and PREVAIL trials. Physicians should be vigilant in detecting and managing enzalutamide-associated fatigue in the real-life setting.

Chemotherapy
Docetaxel (75 mg per square metre administered intravenously every 3 weeks) in combination with prednisolone, was the first life-prolonging drug in men with mCRPC since 2004. Two landmark clinical studies, TAX-327 and SWOG 9916, showed a significant survival benefit with docetaxel/prednisolone compared to the old-fashioned chemotherapy (mitoxantrone or estramustine) in mCRPC11,12. Since then, docetaxel/prednisolone had become the first-line treatment option for mCRPC patients. A retrospective study by Poon et al. evaluated the clinical efficacy and tolerability of docetaxel treatments for mCRPC patients in Hong Kong. It was shown that the median overall survival and progression-free survival were 20.8 months and 5.8 months respectively, which was comparable to the aforementioned TAX-327 and SWOG 9916 studies. The incidence of febrile neutropenia in this cohort is slightly higher than in previous reports (14% in the Poon et al. study vs. 3-5% in TAX 327 and SWOG 9916 studies). This is in concordance with the findings that Asians are susceptible to chemotherapy-induced myelosuppression. Preemptive primary G-CSF should be considered in Chinese mCRPC patients when docetaxel-based chemotherapy is initiated13.

Cabazitaxel (at a dose of 25 mg per square metre administered intravenously every 3 weeks), a second-generation semi-synthetic tubulin-binding taxane, led to significantly improved OS compared with mitoxantrone (both in combination with prednisone/ prednisolone) in men with mCRPC whose disease has progressed during or after docetaxel-based therapy in the TROPIC phase III trial (median survival 15.1 months in the cabazitaxel group and 12.7 months in the mitoxantrone group; HR 0.70; p < 0.001)14. Febrile neutropenia and diarrhoea were significantly more frequent in the cabazitaxel group than in the control group.

Radium-223
Prostate cancer is well-known of its high propensity of bone metastases among other cancers, and up to 90% of patients with mCRPC developed bone metastases. Radium-223, an alpha-particle-emitting radionuclide, mimics calcium and carries a higher biological efficacy in causing tumour cell damage (dsDNA breaks) with more localised effects in bone as a result of the very short range of alpha radiation, and less penetration of the surrounding tissue and subsequently less bone marrow damage. In the ALSYMPCA study, the overall survival was significantly better for patients with mCRPC treated with radium-223 compared with placebo (median OS 14.0 vs 11.2 mo; HR 0.70; p = 0.002)15. Patients who had symptomatic bone metastases without visceral metastasis and without nodal metastases larger than 3 cm in the short-axis diameter were eligible for this study and the benefit of radium-223 in these patients remains uncertain. Adverse events with radium-223 were generally infrequent and included diarrhoea and a small number of cases of thrombocytopenia.

Sequencing of treatments in mCRPC
There are currently five approved systemic life-prolonging therapies for use in mCRPC, with yet little data to guide sequencing. Clinical factors such as the presence or absence of symptoms or visceral metastases, prior treatments and clinical response, potential side effects and preexisting toxicity, patient’s preference, co-morbidities, life expectancy, quality of life, progression dynamics, tumour burden and eligibility for chemotherapy, should help to determine the best therapeutic choice at each treatment node. Those with asymptomatic bone-only disease could be considered for abiraterone, enzalutamide, or docetaxel in the first-line setting. For symptomatic disease, docetaxel could be used while radium-223 is another option if the disease is only present in the bone. In the second-line setting, radium-223 can be used in the appropriate clinical setting. Taxane chemotherapy could be used if a novel androgen-directed therapy was used in the first-line setting. Cabazitaxel, if docetaxel was previously used, should be considered. There are scarce data on the best treatment options in the third-line setting. In general, we recommend alternating between androgen-targeting agents and taxane chemotherapy. Finally, studies had shown AR-V7–encoding RNA expression in circulating tumour cells is associated with a poor prognosis and resistance to abiraterone and enzalutamide but not to taxanes16,17. The testing for the androgen receptor splice-variant AR-V7 may be a relevant treatment-specific biomarker to aid in the selection of androgen-targeting therapy versus chemotherapy in the future.

Conclusion
ADT alone should be no longer the standard of care for patients with metastatic prostate cancer from 2018 onwards. Consideration should be given to the use of upfront chemotherapy or abiraterone together with ADT in patients with newly diagnosed metastatic prostate cancer with high risk features or high volume disease in order to prolong their overall survival. It is a luxury dilemma for uro-oncologists on the optimal selection and sequencing of various life-prolonging therapies, including abiraterone, cabazitaxel, docetaxel,
enzalutamide, and radium 223, in patients who had progressive disease despite androgen-deprivation (mCRPC). Further clinical trials in evaluating the application of biomarkers, e.g AR-V7 splice variant, in treatment decisions are eagerly awaited.

References
For relapsed/refractory multiple myeloma patients with at least 1 prior treatment, respond with Kyprolis®.

Two phase 3 studies supporting the efficacy and safety of Kyprolis® combined with lenalidomide and dexamethasone, and Kyprolis® with dexamethasone alone.¹ ²

ASPIRE (KRd)

- With KRd, almost 1 out of 3 patients reached complete response or better (31.8%)³
- Median PFS of 26.3 months with KRd in first relapse patients (vs. 17.6 months with Rd; HR=0.69, 95% CI: 0.57-0.83, p<0.0001)³

ENDEAVOR (Kd)

- KYPROLIS® doubled the rate of complete response or better versus bortezomib (12.5% vs. 6.2%, p<0.0001)²
- KYPROLIS® doubled the median progression-free survival versus bortezomib (18.7 vs. 9.4 months; HR=0.533, 95% CI: 0.44-0.65, p<0.0001)²

A favourable overall risk-benefit profile³

Significantly less peripheral neuropathy vs. Vd⁴

Management of Advanced Gastric Cancer

Dr Wing-lok CHAN
MBBS, FRCP, FHKCRR, FHKAM (Radiology)
Specialist in Clinical Oncology, Associate Consultant, Department of Clinical Oncology, Queen Mary Hospital

Dr Ka-on LAM
MBBS, FRCP, FHKCRR, FHKAM (Radiology)
Specialist in Clinical Oncology, Clinical Assistant Professor, Department of Clinical Oncology, The University of Hong Kong

Background

Gastric cancer is the sixth commonest cancer in Hong Kong and remains as the fifth leading cause of cancer mortality. Surgery is the mainstay of curative treatment in stage I to III gastric cancer. However, gastric cancer at diagnosis in more than half of the patients is already too advanced and inoperable. Even for the cancer which is resectable upfront, the recurrence rate is still high at around 40-80%. This article gives an overview on the latest development of systemic therapy for advanced/metastatic gastric cancer. Fig. 1 shows the current treatment algorithm for advanced gastric cancer.

First-line treatment

In the last decade, palliative chemotherapy has become the standard of care in patients with advanced/metastatic gastric cancer. A Cochrane review and meta-analysis performed by Wagner et al demonstrated a significant survival benefit in favour of palliative chemotherapy compared with best supportive care (BSC) (HR 0.37; 95% CI 0.24-0.55, p<0.0001). This could be interpreted as an improvement in median survival (OS) from 4.3 months (BSC) to 11 months (with chemotherapy). Combination chemotherapy is superior to monotherapy (HR 0.83, 95% CI 0.74-0.93, p=0.001). Doublet chemotherapy with 5-fluorouracil (5FU) and platinum-based agents is the standard in Asian countries whilst the triplet chemotherapy with the addition of anthracycline is more commonly used in Western countries.

The newer oral fluoropyrimidines, capecitabine and S-1 (or more known as TS-1 in Hong Kong), have been investigated extensively in advanced gastric cancer, as monotherapy and as substitutions for infusional 5FU in combination regimens. The REAL-2 trial evaluated the role of oxaliplatin and capecitabine in chemotherapy-naive metastatic gastric cancer patients. This phase III trial randomised over 1000 patients into four epirubicin-based regimens: 1) epirubicin, cisplatin, fluorouracil (ECF), 2) epirubicin, oxaliplatin, fluorouracil (EOF), 3) epirubicin, cisplatin, capecitabine (ECX), and 4) epirubicin, oxaliplatin, capcetabine (EOX). The efficacy of oral oxaliplatin and capecitabine were non-inferior to cisplatin and fluorouracil respectively, with manageable toxicity profiles, suggesting the more convenient capecitabine and oxaliplatin can safely replace the conventional infusional 5-FU and cisplatin respectively.

S-1 is another oral fluoropyrimidine and is commonly used as first-line regimen in Japan and Korea. The randomised phase III SPIRITS trial including 298 advanced gastric cancer patients showed a longer median OS and progression-free survival (PFS) in patients assigned to S-1 plus cisplatin than in those assigned to S-1 alone (OS: 13.0 months vs. 11.0 months, HR for death 0.77; 95% CI 0.61-0.98; p=0.04; PFS: 6.0 months vs. 4.0 months, HR for disease progression 0.57; 95% CI 0.44-0.73; p<0.0001).

Around 7 to 34% of gastric cancer patients carry amplification or overexpression of HER2, which is an important biomarker and key driver of their tumorigenesis. HER2-positive status in gastric cancer was suggested to be associated with tumour invasion, high grade histology and poor prognosis. Trastuzumab is a monoclonal antibody that targets HER2. In TOGA study, a multi-centre, phase III randomised controlled trial, 594 patients with 3+ staining score on IHC or were FISH-positive (HER2: CEP 17 ratio ≥ 2) were randomised into chemotherapy (cisplatin/ carboplatin combined with fluorouracil) plus trastuzumab or chemotherapy alone. The study revealed a significant improvement in median OS in trastuzumab plus chemotherapy compared with chemotherapy alone (13.8 months vs. 11.1 months, HR 0.74; 95% CI 0.60-0.91; p=0.0046). Median PFS was also significantly improved (median PFS: 6.7 vs 5.5 months, HR = 0.71; 95%C1: 0.59-0.85, p=0.0002). All grades of adverse events and serious adverse events (grade 3 or 4) were similar between the two groups. Since the publication of this promising result, combination of trastuzumab with platinum-based chemotherapy is the standard treatment for HER2-positive advanced gastric cancers.

Second-line chemotherapy

Most patients with metastatic gastric cancer are non-responders or eventually demonstrate disease progression after first-line chemotherapy. Several systematic reviews and meta-analyses have confirmed that second-line therapy resulted in significant survival.
Finally, hope for families with ADPKD\(^1,2\)

As the first disease-modifying treatment for ADPKD, enalapril demonstrates underlying kidney disease, JINARC reduces kidney growth, renal function decline and the risk of pain-related events, compared with placebo.\(^3\)

For ADPKD patients with stage 1-5 CKD and evidence of rapidly progressing disease, it’s the hope they’ve been waiting for. Find out more at JINARC.eu.

The Optimal NOAC for Asian Patients

Once daily LIXIANA is the ONLY NOAC that has proven significant reduction in **All-cause death** in Asians\(^2\)

![Diagram showing efficacy and safety of LIXIANA compared to warfarin](image)

Largest and longest follow up NVAF\(^*\) study with 1943 East Asian population\(^1\)

Daiichi Sankyo Hong Kong Limited,
Room 1001, 10/F., One Houston Avenue, Causeway Bay, Hong Kong
Tel: (852) 2868 9079 Fax: (852) 2803 4141 www.daiichisankyo.com.hk
benefit when compared with BSC alone in patients who failed first-line platinum-based chemotherapy8-10. A meta-analysis in 2013 involving 410 patients evaluated the benefit of second-line chemotherapy versus BSC. A significant reduction in the risk of death [HR = 0.64, 95% confidence interval (CI) 0.52-0.79, \(p<0.0001\)] was observed with salvage chemotherapy11.

Irinotecan and Taxanes

The chemotherapy agents commonly used in second-line setting include: irinotecan and taxanes (paclitaxel or docetaxel). A Korean phase III trial randomised 202 patients into two groups: salvage chemotherapy (single agent irinotecan or docetaxel) and best supportive care12. The study showed a longer median OS in the salvage chemotherapy group (5.3 months vs. 3.8 months, HR 0.657; 95% CI 0.485-0.891, \(P=0.007\)). There were no significant differences between docetaxel and irinotecan.

Ramucirumab

Ramucirumab is a fully human monoclonal antibody (IgG1) directed against vascular endothelial growth factor receptor 2 (VEGFR2). In the REGARD study, which involved 355 advanced gastric cancer patients who failed first-line treatment, both median OS (5.2 vs.3.8 months, HR 0.78, \(p=0.047\)) and PFS (2.1 vs. 1.3 months, HR 0.46, \(p<0.001\)) were similar in both groups. The results of these two studies have subsequently led to FDA and EMEA approval of ramucirumab as second-line treatment for advanced gastric cancer. The use of ramucirumab in combination with platinum-based therapy is now being studied in the first-line setting in a phase III RAINFALL study (NCT02314117) and an Asian phase II study (NCT02539225).

Third-line treatment

With the development of new chemotherapies or targeted agents which are potentially more effective and less toxic, many patients can still maintain a good general condition after failing second-line therapies. A meta-analysis involving six RCTs showed third-line treatment could improve OS (HR 0.63; 95% CI 0.46-0.87, corresponding to an improvement in median OS from 3.20 to 4.80 months) and PFS (HR 0.29; 95% CI 0.18-0.45) compared with BSC. However, the clinical benefits need to be balanced with more treatment-related toxicities13.

Apatinib

Apatinib is an orally bioavailable, small-molecule tyrosine kinase inhibitor that highly selectively binds to and strongly inhibits VEGFR-2. In a phase III randomised controlled trial conducted in Mainland China, 267 participants with histologically confirmed advanced or metastatic adenocarcinoma of stomach who failed second-line chemotherapy were recruited and assigned to either apatinib (oral 850 mg daily) vs. placebo14. Apatinib showed significant clinical benefits compared with placebo in terms of OS (6.5 months vs. 4.7 months, HR 0.709, \(p=0.0156\)), PFS (2.6 months vs. 1.8 months, HR 0.444, \(p<0.001\)). The most common grade 3 to 4 non-haematologic adverse events were hand-foot syndrome, proteinuria, and hypertension. On the basis of the data from this phase III study, apatinib was approved in October 2014 by the China Food and Drug Administration for metastatic gastric or gastroesophageal junction adenocarcinoma after second-line chemotherapy.

Immune-checkpoint inhibitors

The use of immune checkpoint inhibitors has been approved for a number of cancers such as metastatic melanoma and renal cell carcinoma but they are still relatively new comers in gastric cancer.

The most clinically-relevant immune checkpoint inhibitors (CPIs) are monoclonal antibodies that target the programmed cell death-1/programmed cell death-ligand 1 (PD-1/PD-L1) and cytotoxic T-lymphocyte antigen 4 (CTLA-4) pathways. CTLA-4 and PD-1 are co-inhibitory receptors found on the cell surface of T cells. Upon binding to their corresponding ligands (CD80/86 and PD-L1/-L2, respectively) which are expressed on tumour cells, T cell activities become suppressed and the inflammatory responses against cancer cells are halted. The mechanism of CPIs is to bind to PD-1/PD-L1 and/or CTLA-4 either on T cells or cancer cells. This blockade would prevent immune suppression and can therefore unleash a renovated anti-tumour immune response.

In ATTRACTION-2 study, which was a double-blind, placebo-controlled phase 3 randomised controlled trial conducted in Japan, South Korea and Taiwan, nivolumab (anti-PD-1 monoclonal antibody) has shown its superior efficacy compared with placebo in advanced gastric cancer patients, irrespective of PD-1/PD-L1 expression, who have failed at least two lines of systemic treatment (OS: 5.32 months vs. 4.14 months, \(p<0.0001\); 12-month OS: 26.6% vs. 10.9%)15. Nivolumab is also well-tolerated with acceptable safety profile. These encouraging results support the use of CPI as a treatment option in refractory gastric cancer. However, clinical benefits are marginal and there remains room for better selection of patients for this kind of treatment.

In another multicentre, open-label, phase 1b study (KEYNOTE-012), pembrolizumab, another anti-PD-1 monoclonal antibody, showed durable tumour

Fig. 2. Liver metastasis responding to second-line ramucirumab and paclitaxel. A) Liver metastasis at baseline; B) Same liver metastasis after 3 cycles.
control and manageable safety profile for the heavily pre-treated, PD-L1 positive gastric cancer patients (OS 11.4 months, PFS 1.9 months, ORR 22.2%)\(^1\). Studies on pembrolizumab are now in progress, including KEYNOTE-062 comparing cisplatin and 5FU +/- pembrolizumab as first-line monotherapy and KEYNOTE-061 comparing pembrolizumab vs paclitaxel as second-line agent. Avelumab, a human IgG1 anti-PD-L1 antibody, has also been tested in phase III RCTs as first-line and third-line settings for gastric cancer (JAVELIN Gastric 100 and JAVELIN Gastric 300). The results are eagerly awaited and potentially practice-changing.

Conclusion

There has been significant progress in the management of advanced gastric cancer in the last decade. The rational combination of chemotherapy and targeted therapy against angiogenesis have improved the treatment options for many patients who were previously deemed refractory. Immune checkpoint inhibitors have shown early promise though more mature data are awaited before it can be widely, and wisely, adopted. In the future, researches in molecular subtyping, tumour microenvironment and immune landscape should help better understanding of this deadly cancer and enable development of more effective therapies.

References

INDISPENSABLE PARTNERS TO PROTECT THE BONES
Throughout the treatment journey of Prostate and Breast Cancer

XGEVA® (denosumab) Abreast Prescribing Information
XGEVA® (denosumab) Abreast Prescribing Information

INDICATIONS
Indicated for:
- Reduction of skeletal events in adults with bone metastases from solid tumours, and of bone pain in adults with multiple myeloma who are intolerant to or have progression on or after the last cycle of a bone-targeted agent
- Reduction of skeletal events in adults with bone metastases from solid tumours. The recommended dose is 120 mg administered as a single subcutaneous injection once every 4 weeks into the abdomen or upper arm. Effective bone pain relief is seen within 4 weeks of the injection

CONTRAINDICATIONS
- Hypersensitivity to the active substance or to any of the excipients
- Patients with active infection
- Patients with moderate hepatic impairment

WARNINGS AND PRECAUTIONS
- Use in combination with bisphosphonates, parathyroid hormone or denosumab in patients with a history of osteoporosis
- Use in combination with bisphosphonates, parathyroid hormone or denosumab in patients with a history of osteoporosis
- Use in combination with bisphosphonates, parathyroid hormone or denosumab in patients with a history of osteoporosis
- Use in combination with bisphosphonates, parathyroid hormone or denosumab in patients with a history of osteoporosis

DOSAGE AND ADMINISTRATION
The recommended dose of XGEVA is 120 mg administered as a single subcutaneous injection once every 4 weeks into the abdomen or upper arm. Effective bone pain relief is seen within 4 weeks of the injection

PRECAUTIONS
- Use in combination with bisphosphonates, parathyroid hormone or denosumab in patients with a history of osteoporosis
- Use in combination with bisphosphonates, parathyroid hormone or denosumab in patients with a history of osteoporosis
- Use in combination with bisphosphonates, parathyroid hormone or denosumab in patients with a history of osteoporosis
- Use in combination with bisphosphonates, parathyroid hormone or denosumab in patients with a history of osteoporosis

PROLIA® (denosumab) Abreast Prescribing Information
PROLIA® (denosumab) Abreast Prescribing Information

INDICATIONS
Indicated for:
- Reduction of skeletal events in adults with bone metastases from solid tumours
- Reduction of skeletal events in adults with bone metastases from solid tumours
- Reduction of skeletal events in adults with bone metastases from solid tumours
- Reduction of skeletal events in adults with bone metastases from solid tumours

CONTRAINDICATIONS
- Hypersensitivity to the active substance or to any of the excipients
- Patients with active infection
- Patients with moderate hepatic impairment

WARNINGS AND PRECAUTIONS
- Use in combination with bisphosphonates, parathyroid hormone or denosumab in patients with a history of osteoporosis
- Use in combination with bisphosphonates, parathyroid hormone or denosumab in patients with a history of osteoporosis
- Use in combination with bisphosphonates, parathyroid hormone or denosumab in patients with a history of osteoporosis
- Use in combination with bisphosphonates, parathyroid hormone or denosumab in patients with a history of osteoporosis

DOSAGE AND ADMINISTRATION
The recommended dose of PROLIA is 120 mg administered as a single subcutaneous injection once every 4 weeks into the abdomen or upper arm. Effective bone pain relief is seen within 4 weeks of the injection

PROLIA® (denosumab) Abreast Prescribing Information
PROLIA® (denosumab) Abreast Prescribing Information

INDICATIONS
Indicated for:
- Reduction of skeletal events in adults with bone metastases from solid tumours
- Reduction of skeletal events in adults with bone metastases from solid tumours
- Reduction of skeletal events in adults with bone metastases from solid tumours
- Reduction of skeletal events in adults with bone metastases from solid tumours

CONTRAINDICATIONS
- Hypersensitivity to the active substance or to any of the excipients
- Patients with active infection
- Patients with moderate hepatic impairment

WARNINGS AND PRECAUTIONS
- Use in combination with bisphosphonates, parathyroid hormone or denosumab in patients with a history of osteoporosis
- Use in combination with bisphosphonates, parathyroid hormone or denosumab in patients with a history of osteoporosis
- Use in combination with bisphosphonates, parathyroid hormone or denosumab in patients with a history of osteoporosis
- Use in combination with bisphosphonates, parathyroid hormone or denosumab in patients with a history of osteoporosis

DOSAGE AND ADMINISTRATION
The recommended dose of PROLIA is 120 mg administered as a single subcutaneous injection once every 4 weeks into the abdomen or upper arm. Effective bone pain relief is seen within 4 weeks of the injection

PROLIA® (denosumab) Abreast Prescribing Information
PROLIA® (denosumab) Abreast Prescribing Information

INDICATIONS
Indicated for:
- Reduction of skeletal events in adults with bone metastases from solid tumours
- Reduction of skeletal events in adults with bone metastases from solid tumours
- Reduction of skeletal events in adults with bone metastases from solid tumours
- Reduction of skeletal events in adults with bone metastases from solid tumours

CONTRAINDICATIONS
- Hypersensitivity to the active substance or to any of the excipients
- Patients with active infection
- Patients with moderate hepatic impairment

WARNINGS AND PRECAUTIONS
- Use in combination with bisphosphonates, parathyroid hormone or denosumab in patients with a history of osteoporosis
- Use in combination with bisphosphonates, parathyroid hormone or denosumab in patients with a history of osteoporosis
- Use in combination with bisphosphonates, parathyroid hormone or denosumab in patients with a history of osteoporosis
- Use in combination with bisphosphonates, parathyroid hormone or denosumab in patients with a history of osteoporosis

DOSAGE AND ADMINISTRATION
The recommended dose of PROLIA is 120 mg administered as a single subcutaneous injection once every 4 weeks into the abdomen or upper arm. Effective bone pain relief is seen within 4 weeks of the injection

Please read the full prescribing information prior to administration and full prescribing information is available on request.

Abreast Prescribing Information
Abreast Prescribing Information

Amgen Asia-Pacific Limited
United States, Australia, Japan
For more information, please contact Amgen at
+65 2828 7000 or +61 2828 7000 or +61 2828 7000

Please read the full prescribing information prior to administration and full prescribing information is available on request.

Abreast Prescribing Information
Abreast Prescribing Information
PRIME

AGGRESSIVELY ACHIEVING

EARLY TUMOR SHRINKAGE

IN YOUR mCRC PATIENTS

WITH WILD TYPE RAS

CONSISTENT EFFICACY ACROSS ENDPOINTS:1

• ORR by radiological assessment: 60% vs 47%, p=0.003
• Median PFS: 11.1m vs 8.7m, HR=0.74, 95%CI: 0.61-0.89, p=0.0015
• Median OS: 26.0m vs 20.2m, HR=0.76, 95%CI: 0.63-0.92, p=0.0057

* The results were based on pre-defined prospective-retrospective extended RAS mutation analysis of phase III PRIME RCT that was designed to compare the efficacy and safety of Vectibix®-FOLFOX4 with FOLFOX4 alone as first-line therapy in 1,183 patients with mCRC. 59% of patients without RAS mutation, i.e. mRAS were identified and subclassified: 34% PFS analyses: 159.4% of patients receiving Vectibix® + FOLFOX, and 37.6% of patients receiving FOLFOX alone had ≥30% tumor shrinkage at week 8. mCRC = metastatic colorectal cancer. ORR = objective response rate, PFS = progression-free survival, OS = overall survival. RCT = randomized clinical trial. mW = wild-type.

Vibilix® (Panitumumab) Abbreviated Prescribing Information

Vibilix® Concentrate for Solution for Infusion 20 mg/mL

INDICATIONS: Vectibix is indicated for the treatment of adult patients with wild-type mCRC metastatic colorectal cancer (mCRC) as first-line in combination with FOLFOX or FOLFIRI, as second-line in combination with FOLFIRI for patients who have received first-line fluoropyrimidine-based chemotherapy (excluding irinotecan) and as monotherapy after failure of fluoropyrimidine, oxaliplatin, and irinotecan-containing chemotherapy regimens. DOSAGE AND ADMINISTRATION: The recommended dose of Vectibix is 6 mg/kg of bodyweight given once every two weeks. Prior to infusion, Vectibix should be diluted in sodium chloride 9 mg/mL solution for injection to a final concentration not to exceed 10 mg/mL. Modification of the dose of Vectibix may be necessary in cases of severe (grade 3) dermatological reactions. There is no clinical data to support dose adjustments in the elderly. Vectibix must be administered as an intravenous (IV) infusion via an infusion pump, using a low protein binding (0.2–0.22 micrometer) in-line filter and tubing containing potassium and calcium. The recommended infusion time is approximately 60 minutes. If the infusion is interrupted, then subsequent infusions may be administered over 30 to 60 minutes. Doses higher than 1000 mg should be infused over approximately 90 minutes. A reduction in the rate of infusion of Vectibix may be necessary in cases of infusion-related reactions. Vectibix must not administered as an intravenous push or bolus. CONTRAINDICATIONS: Vectibix is contraindicated in patients with a history of severe or life-threatening hypersensitivity reactions to the active substance or any of the excipients, and in patients with interstitial pneumonia or pulmonary fibrosis. The combination of Vectibix with oxaliplatin-containing chemotherapy is contraindicated for patients with mutant RAS mCRC or for whom RAS mCRC status is unknown. SPECIAL WARNINGS AND PRECAUTIONS FOR USE: Dermatologic reactions and sulfite sensitivity: Dermatologic-related reactions, a ph–aminoacyclic acid effect observed with epidermal growth factor receptor (EGFR) inhibitors, are experienced with nearly all patients (approximately 90%) treated with Vectibix. Severe dermatologic reactions, progressively developing serum magnesium levels leading to severe (grade 4) hyperkalaemia have been observed in some patients. Other dermatologic reactions, including hypoplasticia, have also been observed. Hypersensitivity reactions: Acute monotherapy and combination mCRC clinical studies, infusion-related reactions (occurring within 24 hours after infusion) were reported in approximately 4% of Vectibix-treated patients, of which ≤ 1% were severe (NCI-CTC grade 3 and grade 4). Hypersensitivity reactions occurring more than 24 hours after infusion have been reported including a fatal case of angioedema that occurred 28 days after the last dose of Vectibix. Infusion related reactions: Acute renal failure has been observed in patients who develop severe diarrhoea and dehydration. Electrolyte disturbances: Progressively decreasing serum potassium levels leading to severe (grade 4) hypokalaemia have been observed in some patients. Other electrolyte disturbances, including hypoplasticia, have also been observed. Other: Severe cases of keratitis and ulcerative keratitis have been rarely reported. Patients with ECOG 2 performance status. Assessment of benefit-risk is recommended prior to initiation of Vectibix in combination chemotherapy for treatment of mCRC. A positive benefit-risk balance has not been documented in patients with ECOG 2 performance status. INTERACTIONS: The infusion solution should be flushed with sodium chloride solution before and after Vectibix administration to avoid mixing with other medicinal products or Intravenous solutions. Vectibix should not be administered in combination with 5-fluorouracil or bevacizumab-containing chemotherapy. PREGNANCY, LACTATION AND FERTILITY: PREGNANCY: There are no adequate data from the use of Vectibix in preganant women. Breast-feeding: It is unknown whether panitumumab is excreted in human breast milk. LACTATION: Animal studies have shown reversible effects on the maternal cycle and reduced female fertility in monkeys. Pantiomumab may impact the ability of a woman to become pregnant. UNDESIRABLE EFFECTS: Very Commonly reported adverse reactions occurring in ≥20% of patients were gastrointestinal disorders (diarrhoea (30%), nausea (41%), vomiting (27%), constipation (23%) and abdominal pain (23%)), general disorders (fatigue (37%), pyrexia (30%), diarrhoea (27%), infections and infestations (gastroenteritis (20%), and skin and subcutaneous disorders (rash (38%), dermatais acneiform (38%), pruritus (37%), erythema (20%) and dry skin (22%)). OVERDOSE: Doses up to 9 mg/kg have been tested in clinical trials. There have been reports of overdose at doses up to approximately twice the recommended therapeutic dose (12 mg/kg). Adverse events observed included skin toxicity, diarrhoea, dehydration and fatigue and were consistent with the safety profile of the recommended dose. Abbreviated Prescribing Information Version: CDS24IPI08_EUSmPC042015API

This material is for Healthcare Professionals Only.
Introduction

Breast cancer is the most common female cancer in Hong Kong. According to the Hong Kong Cancer Registry 2015, there were 3,900 new cases; the lifetime risk of having breast cancer was 1 in 16 females before 75 years old and the median age of having the disease was 56. There were 16.3% and 7.1% of patients presenting as stage III and IV disease respectively. Since about 60% of breast cancer patients had hormonal positive disease, hormonal therapy is one of the key treatments in breast cancer.

Choice of treatment

After decades of using tamoxifen alone, newer hormonal treatment and targeted therapy combination has emerged especially in the recent few years. Besides tamoxifen, newer choices include aromatase inhibitors (steroidal: anastrozole and letrozole; non steroidal: exemestane) selective oestrogen receptor downregulator (fulvestrant). Options of target therapy using with or without combination of hormonal therapy include mTOR inhibitors (everolimus), CDK4/6 inhibitor (palbociclib, ribociclib and abemaciclib) and PIK3CA inhibitors (taselisib).

The choice of treatment of hormonal positive advanced breast cancer (HR+ve ABC) depends on several factors: menopausal status, extend of disease, any visceral crisis due to cancer, hormonal therapy naive or sensitive or resistant, last treatment regime and HER2 status.

Premenopausal patients

Since most of the hormonal therapy, except tamoxifen, are used in postmenopausal patients, the strategies we commonly use for premenopausal women are chemotherapy or tamoxifen or combined hormonal therapy. For the combined hormonal therapy, we would suggest ovarian suppression first, so that the patients can achieve menopausal status, followed by treatment as for postmenopausal women. Ovarian suppression can be achieved by using LHRRH agonists subcutaneously or bilateral oophrectomy surgically or ovarian ablation by radiotherapy.

Postmenopausal patients

For postmenopausal hormonal receptor (HR) positive disease, it is clinically a spectrum rather than a discrete type of disease behaviour. It ranges from a rapidly progressive disease to a very indolent disease. For the rapidly progressive disease that threatens visceral organs (visceral crisis), we tend to use chemotherapy as the first line treatment owing to its fast onset of action and high response rate. For very indolent disease with no visceral metastases, such as limited bone metastasis only, hormonal therapy alone is good enough for disease control. Do note that hormonal therapy can give a good response despite a longer time to respond compared with chemotherapy.

In between the two extremes of disease behaviour, we can consider using hormone plus CDK4/6 inhibitors or mTOR inhibitors.

Sequencing of combining targeted therapy and hormonal therapy

Sequencing of treatment depends on the last line of treatment and hormonal sensitivity. If the patient has de novo metastatic breast cancer or the disease progresses after at least 12 months of last hormonal therapy, that would be classified as hormonal sensitive disease. Hormonal therapy alone can be the first line of treatment. Aromatase inhibitors (steroidal: anastrozole and letrozole; non steroidal: exemestane) perform similarly; the median time to progression (TPP) is around 12 months compared with tamoxifen, which is 6 months.

The selective oestrogen receptor downregulator (fulvestrant) 500 mg subcutaneously shows superior progression free survival (PFS) than anastrozole; if there is no visceral metastasis, the PFS can be up to 22.3 months.

Combining hormonal therapy with targeted therapy e.g. CDK 4/6 inhibitors could give a PFS around 25 months. Second line treatment will depend on which first line therapy has been given. Treatment choices include hormonal therapy alone, hormonal therapy plus mTOR inhibitors (everolimus) or CDK 4/6 inhibitors. For aromatase inhibitors alone, the TTP is shorter than in the first line, which is around 3-4 months for exemestane.

The use of mTOR inhibitors (everolimus) combining with exemestane can reverse the hormonal resistance of exemestane alone giving the median PFS of 7.8 months versus 3.2 months.

Aromatase inhibitors or fulvestrant combined with CDK4/6 inhibitors in second line setting can give a 7-8 months PFS.
The latest ASCO meeting presented a study showing PIK3CA inhibitor (Taselisib) plus estrogen receptor downregulator (fulvestrant) has 7.4 months PFS compared with fulvestrant, alone which is 5.4 months.

Side effects

Apart from the side effect from the hormonal therapy alone, combination therapy can give rise to additional side effects. Common side effects of CDK 4/6 inhibitors include neutropenia, anaemia, diarrhoea etc; (Table 1). mTOR inhibitors can lead to stomatitis, rash, diarrhoea, pneumonitis, etc. (Table 2)

Table 1: Adverse events with CDK4/6 inhibitors single-agent and combination therapy data form PALOMA3 Study

<table>
<thead>
<tr>
<th>Palbociclib-Fulvestrant</th>
<th>Any Grade</th>
<th>Grade 3</th>
<th>Grade 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any adverse event</td>
<td>97.7%</td>
<td>58.6%</td>
<td>10.7%</td>
</tr>
<tr>
<td>neutropenia</td>
<td>78.8%</td>
<td>53.3%</td>
<td>8.7%</td>
</tr>
<tr>
<td>fatigue</td>
<td>38%</td>
<td>2%</td>
<td>0</td>
</tr>
<tr>
<td>nausea</td>
<td>29%</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>anaemia</td>
<td>26.1%</td>
<td>2.6%</td>
<td>0</td>
</tr>
<tr>
<td>diarrhea</td>
<td>19.1%</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>URI</td>
<td>19.4%</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>constipation</td>
<td>16.8%</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2: Side effects of mTOR inhibitor Everolimus (EVE) Plus Exemestane (EXE)

<table>
<thead>
<tr>
<th>Everolimus + exemestane</th>
<th>Adverse event</th>
<th>All grade (%)</th>
<th>Grade 3 (%)</th>
<th>Grade 4 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stomatitis</td>
<td>59</td>
<td>8</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Rash</td>
<td>39</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td>37</td>
<td>4</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>Diarrhea</td>
<td>34</td>
<td>2</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>Nausea</td>
<td>31</td>
<td>1</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>Weight decreased</td>
<td>28</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>pneumonitis</td>
<td>16</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>hyperglycaemia</td>
<td>14</td>
<td>5</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>31</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Approximate cost per month in Hong Kong Dollars
- Tamoxifen: $140; Aromatase inhibitors: $2800; Faslodex : $10,000; CDK 4/6 inhibitors: 30,000-40,000; mTOR inhibitors: $35,000

Conclusion

The choice of treatment in advanced breast cancer depends on factors including the tumour biology and the disease pace/behaviour. Furthermore, consideration of the efficacy, side effects and financial concern serve as key issues for the decision. New generation target therapies adding onto the hormonal therapy can prolong the disease free survival and overall survival in modern days. (Fig. 1)

Fig. 1 shows a summary of the treatment choices as reference.
START WITH ZYKADIA® NEW APPROVED DOSE:

450 mg Once Daily with Food

FOR THE TREATMENT OF ALK+ ADVANCED NSCLC*

THEY HAVE PLANS. YOU HAVE Zykadia.

ZYKADIA® is indicated for the treatment of adult patients with anaplastic lymphoma kinase (ALK)-positive advanced non-small cell lung cancer (NSCLC).

Reference: S. ZYKADIA® Hong Kong Prescribing Information.

Abbreviated Prescribing Information

Important Note:

Dosage and Administration:

Adults:

Hard gelatin capsules containing 150 mg ceritinib; film-coated tablets containing 150 mg ceritinib.

Indications: Zykadia is indicated for the treatment of adult patients with anaplastic lymphoma kinase (ALK)-positive advanced non-small cell lung cancer (NSCLC).

Dosage and administration:

- **450 mg once daily with food**
- **Start with Zykadia**

No patients required dose reduction or discontinuation of Zykadia due to diarrhea, nausea or vomiting.

Monitor and manage diarrhea, nausea, and vomiting as clinically indicated. Dose interruption and dose reduction may be required based on individual safety and tolerability.

Important note:

Abbreviated Prescribing Information:

FOR THE TREATMENT OF ALK+ ADVANCED NSCLC

Packs and prices:

Novartis Pharmaceuticals (HK) Ltd.

27th Floor, 1063 King’s Road, Quarry Bay, Hong Kong.

Tel: (852) 28825222

Fax: (852) 25770274

Lifestyle But Not Food Alone to Prevent Cancer

Dr Victor HSUE

MBBS (HK), FRCR (UK), FHKCR, FRCPC, FHKAM (Radiology)
DABR (Radiation Onc), DABHPM
Specialist in Clinical Oncology
Consultant, The University of Hong Kong-Shenzhen Hospital

Introduction

It has been 5 years since the article "Myths about Food and Cancer: Hope, Hype or Hoax" was published in the September 2013 issue of The Hong Kong Medical Diary1. Unlike other areas in oncology where tremendous progress can be made within five years, many queries surrounding food and cancer remain unsolved. A search on Google on July 1, 2018 on the phrase "Food causing cancer" produces 449,000,000 links whereas a search on "anti-cancer food" produces 490,000,00 links. The overwhelming data and links on the Internet not only reflect the abundance of data, but more importantly they indicate the vast demand from the general public for knowledge on these subjects. The wide availability of user-provided content in online social media facilitates the aggregation of people pursuance around common interests, worldviews, and narratives. The World Wide Web (WWW) enables the rapid dissemination of unsubstantiated rumors and conspiracy theories that often elicit rapid, large, yet naive social responses2.

The fake health information and misleading ideas on cancer can be detrimental to patients’ health. Anxious cancer patients and their relatives are particularly vulnerable to these scams, the latter making their already difficult lives even more miserable. Worse still, there are mix-ups in preclinical animal data obtained in experimental conditions with human data, and in potential carcinogenic food with food to be avoided in cancer patients. For example, cancer patients often advised by well intentioned friends and relatives not to eat sugary food or milk product or even protein. It is true that sugary food and food high in fat and/or starch, like snacks, bakery foods and desserts should be limited only because they can lead to obesity3.

But if this health advice is given to cancer patients, who is often suffering from malnutrition, the consequence can be devastating. There is no strong evidence that sugary food and drinks carry a direct causation relationship with cancer nor dairy products are associated with any cancer risk. On the contrary, systematic review and meta-analysis suggest an inverse relation between the incidence of colorectal cancer and dairy intake4.

It is a common misconception that if a food item is associated with increased risk of cancer then the patient should avoid taking that food item even after cancer is developed. It is important to understand that causation factor is different from promoter factor. For example, obesity may have contributed to endometrial carcinoma but losing weight will not help to control the already developed malignancy.

British Research Council suggests certain lifestyle modification to prevent 4 out of 10 cancers5. A recent study6 by David Whiteman from Australia showed that 16,700 (about 40 percent) of cancer deaths in Australia in the year 2013 are potentially preventable, including smoking (active/passive) which accounts for 23 percent, while dietary factors, obesity and infection (e.g. HCV and HPV) are each accountable for about 5 percent22. Similarly, another study by American Cancer Society estimated that diet with excessive red/processed meat and insufficient vegetables has contributed to 1.3% and 3% of cancer deaths respectively33. Despite only 5 percent of cancer can be prevented by modification of diet and no data suggests that a particular food can worsen the malignant disease, the belief that cancer patients (particularly among Chinese people) should abstain from taking certain food (戒口) is so popular that almost any single food item can be named as the culprit.

Smoking

Smoking is obviously the most important carcinogenic factor and will not be discussed in detail in this article. According to a recent report7, about 30% of human cancer can be attributed to smoking. Contrary to most public belief, electronic cigarette, although not entirely safe, was regarded by most researchers to be able to reduce the incidence of cancer18,19. However, long term results are currently lacking and are eagerly awaited.

Obesity

Current data suggest that the increase of body weight (body fatness) is a much more important factor than previously thought. According to Vital Signs report from the Centers for Disease Control and Prevention (CDC)20, obesity has been linked to 13 types of different cancers (Fig.1). Obesity can cause many metabolic and endocrine abnormalities such as the elevation of fasting insulin level and oestriadiol, and inflammatory mediators exerting proliferative effects8. These changes have been linked to carcinogenesis. Sugary food alone is not a direct cause of cancer unless associated with obesity. The claim that cancer patients should not take food containing sugar is faulty. On the contrary sugar is a good source of energy, particularly for patients on treatment for cancer.
Red meat/processed meat

It is widely known that red meat and processed meat should be limited. Cooking meat at high temperature will produce heterocyclic amines (HCAs) and polycyclic aromatic hydrocarbons (PAHs) which are potentially carcinogenic. Haem iron intake has been associated with increased risk of colorectal carcinoma. According to a recent study, red/processed meat contributed to 1.7% in men and 0.8% in women of colorectal carcinoma. On the other hand, there is no evidence that food rich in protein has increased risk or is harmful to patients who already have cancer. Foods such as bird’s nest, sea cucumber and fish maw are all considered safe.

Alcohol

Alcohol is well known as a carcinogen for orodigestive tract and liver. It is found to have increased colon cancer in man and breast cancer in women. Mechanisms are diverse: including its toxic metabolite acetaldehyde and induction of oxidative stress through production of free radicals. It can also act as a solvent for other carcinogens and is associated with increased levels of oestradiol. It causes about 4% of cancer-related death in the USA. It is important to know that there is no safe amount (threshold limit) of alcohol that can be consumed.

Coffee and tea

Recently Readers’ Digest has listed out “30 Proven Foods to Help Prevent Cancer”. These foods are in general healthy food and should be promoted. However, excessive intake of beta carotene (rich in carrot) supplement has shown to have increased lung cancer. So the common myth of drinking carrot juice to prevent cancer may produce contrary effects and should not be encouraged.

Coffee is also one of the listed food and it can prevent bowel cancer and liver cancer, supported by recent literature. Interestingly, this is controversial with California court’s ruling that coffee sold in California must have a sign warning consumer potential risk of cancer (Fig. 2).

The concerned chemical in coffee is Acylamide, which also exists in other foods such as French fries, cracker, bread and cookies when heated to high temperature. Although Acylamide has been linked to increased cancer risk in animal studies, there is no strong data to suggest it is carcinogenic in humans. Moreover, many of the sources of Acylamide are present in everyday food intake and cannot be totally avoided. According to FDA, the current advice is to adopt a general healthy eating pattern rather than trying to lower the Acylamide intake. It is always safer when cooking food to aim at “go for the gold” rather than over cook to dark.

Green tea, which is rich in anti-oxidant, has a clear image as a healthy food. However, it has conflicting results in cancer prevention trials. It is important to know that there were nine randomized trial in anti-oxidant supplement and all failed to provide evidence in cancer prevention. Similarly, no data was found to support the use green tea in treating cancer patients.

Conversely recent data suggests that green tea may have a negative effect on Velcade, a commonly used chemotherapy for myeloma. We have to take caution that sometimes seemingly innocent supplements may create unexpected harm.

Superfood?

In contrast to articles in many health magazine, there are actually no superfood that can prevent all cancer. There have been many claims in the Internet / TV / radio promoting lemon, asparagus, black garlic and broccoli. Unfortunately, there is no proof that they have any real benefit in preventing or treating cancer. In fact Ketchup, which is a rich source of lycopene and Vitamin A and C, may have similar health benefit as fresh tomato if one believes that the benefit of tomato is related to the presence of lycopene.

Herbs and spices

It is unarguable that there are a vast amount of substances in plants that can be used in different areas of medicine over thousands of years of human civilization. Some of these substances are found to be useful in medicine. Examples include the gout medicine, Colchicine, originally extracted from plants of the genus Colchicum and morphine isolated from poppy straw of the opium poppy etc.
There are many claims that some of these herbs and spices can cure cancer. One example is the Canadian Essiac tea, a herbal combination (Burdock root, sheep sorrel, slippery elm and Indian Rhubarb root) invented by a Ontario nurse Caisse in 1920 (ESSIAC is her name in reverse) for treating cancer. Subsequent trials failed to demonstrate any benefits. FDA has issued a statement against its claim and trial in Ontario has not supported its efficacy. However compared to some other unproven alternative remedies which can be very expensive, Essiac isn’t expensive: One month supply of Essiac tea costs around £6.00.

Another example is the "Selected Vegetable" or so called "Sun’s soup" which was claimed by its developer to have cured his relative who was suffering from late stage lung cancer in 1980’s. This vegetable combination was patented, and one randomized clinical trial (NCT00246727) of patients with stage IIIB or stage IV non-small cell lung cancer was conducted in the US as complementary or alternative medicine trial. The trial was started in Dec 2005 but result has not been reported or published.

Indeed, many of the chemotherapy agents are derived from plant products (e.g. topotecan from Camptotheca, vinca alkaloids from Catharanthus, docetaxel and paclitaxel from Taxus bevifolia), but there is minimal efficacy when the original plant is used. Substances in plants may vary with climate, soil, storage, freshness and place of origin. The purity of the active ingredients cannot be judged from the plant appearance. In order to assess the effectiveness of the herbs, its active ingredients should be identified and purified. Dry extract of the plant is not the solution. In 2015 Youyou TU (屠呦呦) was awarded Nobel Prize in medicine due to her work in identification and purification of Artemisinin (青蒿素) a drug that has significantly reduced the mortality rates for patients suffering from Malaria.

Most herbs and dietary supplements use have not been studied together with chemotherapy drugs and their interactions remain unclear. When taken during chemotherapy, potentially it can cause profound drop in cell counts and hence it is advisable to stop taking these supplements during chemotherapy.

Many herbs exist in nature which may have anti-cancer properties, two common herbs include garlic and turmeric.

Garlic

While raw garlic has anti-microbe, anti-platelet activities and lowering cholesterol properties, its exact role in preventing cancer is not clear. A randomized trial in China using garlic extract supplement has reduced the incidence of stomach cancer in high risk population by more than 50%. However another randomized trial of using garlic supplements in gastric precancerous lesion show no reduction of precancerous lesion and invasive disease. A meta-analysis of 18 studies cannot confirm its role in cancer prevention.

Turmeric

Turmeric has been used for more than 3,000 years in cooking in different cultures. The bright yellow compound, Curcumin (薧黃素), in turmeric has been widely studied in cancer research.

It demonstrates anti-inflammatory, immunomodulatory, anti-proliferative and chemopreventive activities in lab studies. The proposed mechanisms on different stages of cancer development is as shown in Fig. 3.

Biologically curcumin inhibits CYP1A4 and CYP3A4 but induces CYP2A6 enzymes thereby altering the metabolism of some prescription drugs. There are also ongoing human trials to study curcumin effect on human cancer patients. Recent study from Netherlands suggests the regular use of curcumin and tamoxifen can decrease the serum level of the latter and therefore the use of it as a treatment outside clinical trial settings are not advised.

Organic food versus genetically modified food

Organic food has been promoted as an alternative to foods grown with conventional methods using chemical herbicides, pesticides, hormones or antibiotics. It also exclude genetically modified food sometimes known genetically modified organisms (GMO). Organic food, often more expensive, is sometimes considered to be more nutritious than conventional food, although the evidence is not strong. However, they are not necessarily free of lead or other heavy metals/pollutants if these chemicals already exist in the soil.

One of the main concern is the presence of the active chemical of weed killer “Roundup”, Glyphosate, which is considered as a Category 2A (probably carcinogenic) by the International Agency of Research on Cancer (IARC) (Fig.4), same Category as red meat. This chemical has been widely used for more than 40 years and have been strictly regulated and they usually exist only in very low level in food and should not posed a significant risk. Review released in 2015 by the German Federal Institute for Risk Assessment (BfR) concluded that “glyphosate was unlikely to pose a carcinogenic risk to humans.”
High doses of some pesticides e.g. captalol, ethylene dibromide, glyphosate, malathon, diazinon and dichlorodiphenyltrichloroethane (DDT) can cause cancer in animals and are classified as Category II A. The levels found in foods are usually regulated to make sure they are in a very low dose level and therefore should not impose a high risk to human. Nevertheless, if someone is concerned about pesticide residues in fruit and vegetables, one should always wash them thoroughly under clean running water which will effectively reduce surface contaminants, including pesticide residues. Soaking can also reduce pesticide residues in some studies, but it will also cause the losing of nutrients. Centre for Food Safety (CFS) no longer recommends soaking vegetables in view of the low level of pesticide residues detected and the fact that no food poisoning incidents related to pesticide residues have been reported in recent years.

A large study involving more than 600,000 women in the U.K. did not show any definite benefit from the regular consumption of organic food. Conventional fruits and vegetables, fresh and thoroughly washed and consumed in adequate amount, helps to lower cancer risk.

Genetically Modified (GM) food, when approved to be sold in the market, is generally considered safe and there is no proof that it leads to increase cancer incidence in humans. However, many people are still concerned just because it is “not from the mother nature”. In a recent survey in England, more than one-third of the people participating in the survey believe GM food is carcinogenic. In order to safeguard the public concern, it should be clearly labeled as recommended by Centre for Food Safety.

Physical activity

There are strong evidence that physical activity can reduce cancer risk of colon/rectal, postmenopausal breast and endometrium. Exercise will improve insulin sensitivity and reduce fasting insulin level. Findings also show that exercise have immunomodulatory effects which are increasingly recognized in tumour surveillance. It can also decrease oxidative stress and enhance DNA repair mechanism. On the same note, physical inactivity can account for 1.3% of all cancer. According to the latest Third Expert Report “Diet, Nutrition, Physical Activity and Cancer: a Global Perspective” by the World Cancer Research Fund, not only the strenuous exercise can reduce the incidence of cancer. Exercise can reduce incidence of colorectal, endometrial and breast cancer developed after menopause. Simple exercise like walking have been shown to reduce breast cancer (Fig. 5).

To summarize, our diet, lifestyle, environment and most importantly the genetic make up all has its role to play in the development of malignancy but none of which is the sole cause. Abstinence from smoking and/or alcohol is probably most important modification that can be made to prevent cancer. Fighting against different infections causing cancer is being done (Vaccination of HPV and Hepatitis and treatment of Helicobacter pyloris). Food has been given a disproportional attention by the public. Resource have been drained to these areas. The importance of other lifestyle factors such as weight control and physical activity should be emphasized.

This article humbly serves to be an introduction to this big subject. There are far too much information and research related to food/lifestyle and cancer. A very useful summary has been made by the World Cancer Research Fund International (Fig. 6). This is a comprehensive summary of all the strong evidence on diet, nutrition, physical activity and the prevention of cancer and should be a nice summary for ease of reference.

If the reader is eager to study more, there are a few sites, as shown below, providing unbiased information:

- https://www.fda.gov/forconsumers/protectyourself/healthfraud/default.htm
SUMMARY OF STRONG EVIDENCE ON DIET, NUTRITION, PHYSICAL ACTIVITY AND THE PREVENTION OF CANCER

To reference this matrix please use the following citation:

Abbreviation: SLR, systematic literature review

<table>
<thead>
<tr>
<th>Category</th>
<th>Subcategory</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>AERODIGESTIVE CANCERS</td>
<td>Mouth, pharynx, larynx 2016</td>
<td>Includes both foods naturally containing the constituent and foods which have the constituent added</td>
</tr>
<tr>
<td></td>
<td>Nasopharynx 2017 (SLR)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oesophagus (adenocarcinoma) 2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oesophagus (squamous cell carcinoma) 2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lung 2017</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stomach 2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pancreas 2012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gallbladder 2015</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Liver 2015</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Colorectum 2017</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Breast premenopause 2017</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Breast postmenopause 2017</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ovary 2014</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Endometrium 2013</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prostate 2014</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kidney 2015</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bladder 2015</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Skin 2017 (SLR)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aerodigestive cancers (aggregated) 2016-2018</td>
<td></td>
</tr>
</tbody>
</table>

RISK OF WEIGHT GAIN, OVERWEIGHT OR OBESITY 2016

- **Colonic cancer only.**
- **Aerobic physical activity only.**
- **Screen time is a marker of sedentary behaviour.**
- **Body fatness is marked by body mass index (BMI) and where possible waist circumference and waist-hip ratio.**
- **Stomach cardia cancer only.**
- **Advanced prostate cancer only.**
- **Young women aged about 18 to 30 years; body fatness is marked by BMI.**
- **Stomach cardia cancer only.**
- **Malignant melanoma only.**
- **Adult attained height is unlikely to directly influence the risk of cancer. It is a marker for genetic, environmental, hormonal and nutritional factors affecting growth during the period from preconception to completion of growth in length.**
- **Evidence relates to effects on the mother who is breastfeeding and not to effects on the child who is being breastfed.**
- **Screen time is a marker of sedentary behaviour.**
- **Body fatness is marked by body mass index (BMI) and where possible waist circumference and waist-hip ratio.**
- **Stomach cardia cancer only.**
- **Advanced prostate cancer only.**
- **Young women aged about 18 to 30 years; body fatness is marked by BMI.**
- **Malignant melanoma only.**

1. Includes mouth, pharynx and larynx, nasopharynx, oesophagus (squamous cell carcinoma and adenocarcinoma), lung, stomach and colorectal cancers.
2. Aggregated exposure which contains evidence for non-starchy vegetables, fruit and citrus fruit.
3. The Panel notes that while the evidence for links between individual cancers and non-starchy vegetables or fruits is limited, the pattern of association is consistent and in the same direction, and overall the evidence is more persuasive of a protective effect.
4. Includes evidence on total dairy, milk, cheese and dietary calcium intakes.
5. Includes mouth, pharynx, larynx, nasopharynx, oesophagus (squamous cell carcinoma and adenocarcinoma), lung, stomach and colorectal cancers.
6. Includes mouth, pharynx, larynx, nasopharynx, oesophagus (squamous cell carcinoma and adenocarcinoma), lung, stomach and colorectal cancers.
7. Includes foods preserved by salting, such as smoked foods and processed meats.
8. Includes evidence on total dairy, milk, cheese and dietary calcium intakes.
9. Based on intakes above approximately 30 grams of ethanol per day (about 2 drinks per day). There is insufficient evidence for intake greater than 30 grams per day.
10. Young women aged about 18 to 30 years; body fatness is marked by BMI. **Screen time is a marker of sedentary behaviour.**
11. Evidence is more persuasive of a protective effect.
12. Includes both foods naturally containing the constituent and foods which have the constituent added and includes studies using supplements.
13. Colon cancer only.
14. Aerobic physical activity only.
15. Screen time is a marker of sedentary behaviour.
16. Body fatness is marked by body mass index (BMI) and where possible waist circumference and waist-hip ratio.
17. Stomach cardia cancer only.
18. Advanced prostate cancer only.
19. Young women aged about 18 to 30 years; body fatness is marked by BMI. **Screen time is a marker of sedentary behaviour.**
20. Malignant melanoma only.
21. Adult attained height is unlikely to directly influence the risk of cancer. It is a marker for genetic, environmental, hormonal and nutritional factors affecting growth during the period from preconception to completion of growth in length.
22. Evidence relates to effects on the mother who is breastfeeding and not to effects on the child who is being breastfed. **Screen time is a marker of sedentary behaviour.**
23. Relates to overall breast cancer (unspecified).
24. Evidence relates to effects on the mother who is breastfeeding and not to effects on the child who is being breastfed. **Screen time is a marker of sedentary behaviour.**

dietandcancerreport.org

May 2018

Fig. 6. This material has been reproduced with permission from the World Cancer Research Fund/American Institute for Cancer Research. Diet, Nutrition, Physical Activity and Cancer: a Global Perspective. Continuous Update Project Expert Report 2018. Available at dietandcancerreport.org
Annual Scientific Meeting 2018
Medical Advances in Community Health

Date: 7 Oct 2018 (Sunday) Time: 9:30am - 5:00pm
Venue: Ballroom, 3/F, Sheraton Hong Kong Hotel & Towers,
20 Nathan Road, Tsim Sha Tsui, Kowloon

Opening Ceremony

Session I - Community Health
Chairpersons: Dr. Jane CHAN & Dr. Ludwig TSOI
- The Role of Chinese Medical Association in the Belt & Road Initiative / The Changes Brought About by the 2-child Policy to the Medical System
 CMA speaker
- Ethical Issues in Community Healthcare
 Dr. Derrick Kit-sing AU
 Director of the CUHK Centre for Bioethics, Medical Faculty, the Chinese University of Hong Kong

Session II - Hepatology & Cardiology
Chairpersons: Dr. Mario CHAK & Prof. Bernard CHEUNG
- Hepatitis C in 2018
 Prof. Ching-lung LAI
 Chair Professor, Department of Medicine, The University of Hong Kong, Queen Mary Hospital
- Cholesterol Lowering
 Prof. David Chung-wah SIU
 Department of Cardiology, HCO

Session III - Mental Health & Oncology
Chairpersons: Dr. Yin-kwok NG & Dr. Desmond NGUYEN
- Depression
 Prof. Siu-wa TANG
 Current Past and Founding President, Hong Kong Society of Biological Psychiatry
- Colorectal Screening – Where Are We Heading?
 Dr. William Chia-shing MENG
 Specialist in General Surgery

Session IVa - Respiratory Health
Chairpersons: Dr. Alson CHAN & Dr. Tony TO
- One Airway Diseases Management: Allergic Rhinitis & Asthma
 Prof. Henry P.H. PAU
 Specialist in ENT
- Electronic Cigarette and New Tobacco Products To Ban or To Let Free?
 Dr. Tai-hing LAM
 Chair Professor of Community Medicine and Sir Robert Kolowall Professor in Public Health, School of Public Health, The University of Hong Kong

Session IVb - Metabolic Disease
Chairpersons: Dr. Kai-ming CHAN & Dr. Victor YEUNG
- Current Landscape of Obesity in Hong Kong
 Dr. Michele Mae-ann YUEN
 Founding co-president, Hong Kong Obesity Society
- Advances in Diabetic Nephropathy
 Dr. Samuel Ka-shun FUNG
 Chief of Nephrology & Consultant Physician, Department of Medicine & Geriatrics, Princess Margaret Hospital

Session Va - Dermatology & Allergy
Chairpersons: Dr. Edwin YU & Ms. Tina YAP
- Dermatology / Eczema
 Dr. Kingsley Hau-ngai CHAN
- Diagnosis and Management of Allergic Diseases: A Practical Update
 Dr. Aison Wai-ming CHAN
 Specialist in Paediatric Immunology & Infectious Diseases, Allergy Centre, Hong Kong Sanatorium & Hospital

Session Vb - Infection & Urology
Chairpersons: Dr. Thomas SO & Dr. Kwai-ming SIU
- Benign Prostatic Hyperplasia
 Dr. Victor YEUNG
 Specialist in Urology
- Update in the Use of Antibiotics
 Dr. Kai-ming CHAN
 Specialist in Infectious Diseases

Lunch Symposium - Brain Health
Chairperson: Dr. Samuel FUNG
- Etiology Based Management of Epilepsy: How Genetics & Surgical Treatment Make a Difference?
 Dr. Mario CHAK
 President, The Federation of Medical Societies of Hong Kong

Registration Fee
HK$100 Members of Member Societies of FMSHK
HK$400 Non-members

Sponsors:

Registration
Application form can be found overleaf or downloaded from website http://www.fmshk.org
CME / CNE Accreditation is pending
Enquiry: 2527 8898
THE FEDERATION OF MEDICAL SOCIETIES OF HONG KONG
香港醫學組織聯會

Annual Scientific Meeting 2018
“Medical Advances in Community Health”

7 October 2018 (Sunday) 9:30am - 5:00pm (Registration at 9:00am)
Ballroom, 3/F, Sheraton Hong Kong Hotel & Towers, 20 Nathan Road, Tsim Sha Tsui, Kowloon

REGISTRATION FORM

□ Prof. □ Dr. □ Mr. □ Ms. □ Mrs.
Surname: ___________________________ First name: ___________________________
Tel no.: ___________________________ *Email Address: ___________________________
Occupation: ___________________________ Organisation: ___________________________
Member of: ___________________________ (FMSHK Member Society)

※ Please ☒ when appropriate

1. I would like to attend Annual Scientific Meeting 2018

☐ Morning Sessions
 • Session I - Community Health
 Time: 10:00am - 11:00am
 • Session II - Hepatology & Cardiology
 Time: 11:20am - 12:20pm

☐ Lunch Symposium - Brain Health (First 100 applicants)
 • Time: 12:20pm - 1:20pm
 ☐ For Vegetarian Meal, please "✓" in the box

☐ Afternoon Sessions
 • Session III - Mental Health & Oncology
 Time: 1:20pm - 2:20pm
 • Session IV(a) - Respiratory Health ("parallel symposium")
 Time: 2:40pm - 3:40pm
 • Session IV(b) - Metabolic Disease ("parallel symposium")
 Time: 2:40pm - 3:40pm
 • Session V(a) - Dermatology & Allergy ("parallel symposium")
 Time: 3:40pm - 4:40pm
 • Session V(b) - Infection & Urology ("parallel symposium")
 Time: 3:40pm - 4:40pm

2. Registration Fee: Member: $100 / Non-member: $400
 Fee enclosed: ☐ $100 ☐ $400 Cheque No.: ___________________________

3. Certificate of Attendance required (with CNE points awarded) ☐ Yes ☐ No

Signature ___________________________ Date ___________________________

Remarks:
1. Confirmation will be sent by EMAIL*
2. Please send registration form with cheque made payable to "Federation of Medical Societies of Hong Kong" to
 4/F, Duke of Windsor Social Service Building, 15 Hennessy Road, Wan chai, Hong Kong on or before 26 September, 2018 (Wed).
3. No refund will be made if you have to cancel your registration afterwards
4. CME/CNE accreditation is pending

Tel: (852) 2527 8898 Fax: (852) 2865 0345 Homepage: www.fmshk.org E-mail: info@fmshk.org
A middle-aged Chinese male presented with a two-year history of non-itchy, non-painful hyperkeratotic and warty plaques over his buttocks and posterior aspect of both thighs (Fig.1). The lesions gradually progressed and involved a wide area with well-demarcated advancing edges. There were no lymphadenopathy and systemic symptoms. His past health was otherwise good.

Questions

1. What are your differential diagnoses?
2. How do you confirm the diagnosis?
3. What further investigations will you do after the establishment of diagnosis?
4. What is the mainstay of treatment?

(See P.44 for answers)
ROOM RENTAL PROMOTION
Book now & get FREE 2 hours

FSMHK Member Societies are offered 2 hours FREE rental exclusively.
(Applicable to societies who haven’t used the rental service before)

Suitable for Meeting / Seminar / Press Conference / Personal Gathering

Well Equipped for Rental:
Sound system : microphones / Notebook with LCD projector / 42" TV / Broadband Internet & wifi / Refreshment Ordering, Drinks Ordering / Printing & Photocopy Services

Location: 4/F., Duke of Windsor Social Service Building, 15 Hennessy Road, Wan Chai, Hong Kong
Queen Mary 2 Ship Visit

The Queen Mary 2 Ship Visit was successfully held on 30 Mar 2018. We were honored to have Exco Members, Foundation Directors, Presidents, Hon. Treasurers, Hon. Secretaries and Council Representatives of our Member Societies, and members of Federation to join us on board. All the guests had a delightful and lovely evening with an extensive ship tour and fine dining in the elegant setting of the Verandah restaurant. Our President, Dr. Mario CHAK marked the opening with a warm welcome speech. He updated our members Federation’s latest activities and possible collaborations with the Chinese Medical Association as well as the medical professionals in the Greater Bay Area. All the joyfulness and enrichment of friendship were captured in the photos.
Dear Doctor,

After hearing I had cancer, the idea of chemotherapy was really scary. However, it was easier to cope with than I imagined.
<table>
<thead>
<tr>
<th>Sunday</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HKMA Central, Western & Southern Community Network - Management of Lung Cancer: Update in EGFR Targeted Treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HKMA Central, Western & Southern Community Network - Certificate Course on Psychiatry (Session 2) - Management of Depression and Comorbidities</td>
<td>HKMA Central, Western & Southern Community Network - Novel Combination of Basal Insulin and GLP1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HKMA Tai Po Community Network - Implications of EMPA-REG OUTCOME in Asian Patients with Type 2 Diabetes</td>
<td>HKMA Central, Western & Southern Community Network - Latest Evidence on Achieving Aflouma Control at Primary Setting</td>
<td></td>
<td>HKMA Tai Po Community Network - Current Paediatric Vaccine for Childhood Immunisation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HKMSHK Certificate Course in Practical Obstetric Ultrasonography (6)</td>
<td>HKMA Central, Western & Southern Community Network - Certificate Course on Psychiatry (Session 3) - Latest Evidence on Achieving Aflouma Control at Primary Setting</td>
<td>HKMSHK Certificate Course in Respiratory Medicine 2018 (2)</td>
<td>HKMA Tai Po Community Network - Implications of EMPA-REG OUTCOME in Asian Patients with Type 2 Diabetes</td>
<td>HKMA Tai Po Community Network - Latest Evidence on Achieving Aflouma Control at Primary Setting</td>
<td></td>
</tr>
<tr>
<td>HKMSHK Certificate Course in Practical Obstetric Ultrasonography (5)</td>
<td>HKMA Tai Po Community Network - Latest Evidence on Achieving Aflouma Control at Primary Setting</td>
<td>HKMA Central, Western & Southern Community Network - Certificate Course on Psychiatry (Session 3) - Latest Evidence on Achieving Aflouma Control at Primary Setting</td>
<td>HKMA Tai Po Community Network - Certificate Course on Psychiatry (Session 4) - Management of Depression and Comorbidities</td>
<td>HKMA Central, Western & Southern Community Network - Certificate Course on Psychiatry (Session 5) - Management of Depression and Comorbidities</td>
<td>HKMA Tai Po Community Network - Certificate Course on Psychiatry (Session 6) - Management of Depression and Comorbidities</td>
<td></td>
</tr>
<tr>
<td>HKMSHK Officers’ Meeting</td>
<td>HKMA Tai Po Community Network - Current Paediatric Vaccine for Childhood Immunisation</td>
<td>HKMA Central, Western & Southern Community Network - Certificate Course on Psychiatry (Session 3) - Latest Evidence on Achieving Aflouma Control at Primary Setting</td>
<td>HKMA Central, Western & Southern Community Network - Certificate Course on Psychiatry (Session 4) - Management of Depression and Comorbidities</td>
<td>HKMA Central, Western & Southern Community Network - Certificate Course on Psychiatry (Session 5) - Management of Depression and Comorbidities</td>
<td>HKMA Central, Western & Southern Community Network - Certificate Course on Psychiatry (Session 6) - Management of Depression and Comorbidities</td>
<td></td>
</tr>
<tr>
<td>HKMA Council Meeting</td>
<td>HKMA Central, Western & Southern Community Network - Latest Evidence on Achieving Aflouma Control at Primary Setting</td>
<td>HKMSHK Officers’ Meeting</td>
<td>HKMA Central, Western & Southern Community Network - Certificate Course on Psychiatry (Session 3) - Latest Evidence on Achieving Aflouma Control at Primary Setting</td>
<td>HKMA Central, Western & Southern Community Network - Certificate Course on Psychiatry (Session 4) - Management of Depression and Comorbidities</td>
<td>HKMA Central, Western & Southern Community Network - Certificate Course on Psychiatry (Session 5) - Management of Depression and Comorbidities</td>
<td></td>
</tr>
<tr>
<td>HKMSHK Certificate Course in Respiratory Medicine 2018 (2)</td>
<td>HKMA Central, Western & Southern Community Network - Latest Evidence on Achieving Aflouma Control at Primary Setting</td>
<td>HKMSHK Officers’ Meeting</td>
<td>HKMA Central, Western & Southern Community Network - Certificate Course on Psychiatry (Session 3) - Latest Evidence on Achieving Aflouma Control at Primary Setting</td>
<td>HKMA Central, Western & Southern Community Network - Certificate Course on Psychiatry (Session 4) - Management of Depression and Comorbidities</td>
<td>HKMA Central, Western & Southern Community Network - Certificate Course on Psychiatry (Session 5) - Management of Depression and Comorbidities</td>
<td></td>
</tr>
<tr>
<td>HKMSHK Council Meeting</td>
<td>HKMA Central, Western & Southern Community Network - Latest Evidence on Achieving Aflouma Control at Primary Setting</td>
<td>HKMSHK Officers’ Meeting</td>
<td>HKMA Central, Western & Southern Community Network - Certificate Course on Psychiatry (Session 3) - Latest Evidence on Achieving Aflouma Control at Primary Setting</td>
<td>HKMA Central, Western & Southern Community Network - Certificate Course on Psychiatry (Session 4) - Management of Depression and Comorbidities</td>
<td>HKMA Central, Western & Southern Community Network - Certificate Course on Psychiatry (Session 5) - Management of Depression and Comorbidities</td>
<td></td>
</tr>
</tbody>
</table>
The first and only oral oncolytic combination tablet - LONSURF® (trifluridine and tipiracil) tablets deliver extended overall survival\(^1,2\)

LONSURF® provided statistically significant improvement in overall survival compared to placebo

![Graph showing overall survival comparison between LONSURF and placebo](image)

- **HR**: 0.68 (95% CI, 0.58-0.81; \(P<0.001\))
- **5.3 months** for LONSURF
- **7.1 months** for placebo

The 1 year survival rate with LONSURF® was **27%** vs **18%** with placebo

LONSURF® is indicated for the treatment of patients with metastatic colorectal cancer (mCRC) who have been previously treated with fluoropyrimidine-, oxaliplatin- and irinotecan-based chemotherapy, an anti-VEGF biological therapy, and if RAS wild-type, an anti-EGFR therapy\(^1\)

HIGHLIGHTS OF PACKAGE INSERT

- **INDICATIONS AND USAGE**: LONSURF® is a combination of trifluridine and tipiracil, a metabolite of trifluridine. It is indicated for the treatment of patients with metastatic colorectal cancer who have been previously treated with fluoropyrimidine-, oxaliplatin- and irinotecan-based chemotherapy, an anti-VEGF biological therapy, and if RAS wild-type, an anti-EGFR therapy.

INDICATIONS

- Metastatic colorectal cancer

CONTRAINDICATIONS

- Hypersensitivity to trifluridine or tipiracil

ADVERSE REACTIONS

- The most common adverse reactions (\(\geq 10\%\)) are anemia, neutropenia, asthenia, fatigue, nausea, vomiting, diarrhea, appetite decrease, dyspepsia, weight loss, abdominal pain, and pyrexia.

USE IN SPECIFIC POPULATIONS

- **Lactation**: It is not known whether LONSURF® is excreted in human milk. Women may choose to discontinue breastfeeding if they wish to avoid exposure to LONSURF®.

WARNINGS AND PRECAUTIONS

- **Serious Myelosuppression**: Complete blood count prior to and on Day 37 of each cycle. Reduce dose and hold LONSURF® as clinically indicated.

REFERENCES

Date / Time	Function	Enquiry / Remarks
4 TUE
1:00 PM | HKMA Tai Po Community Network - Current Paediatric Vaccine for Childhood Immunisation | Miss Antonia LEE
Organiser: HKMA Tai Po Community Network; Chairman: TBC; Speaker: Dr. LEUNG Cheuk Wa, Wilfred; Venue: Chuichow Garden Restaurant (龍江店), Shop 001-003, 1/F, Uptown Plaza, No. 9 Nam Wan Road, Tai Po

1:00 PM | HKMA Yau Tsim Mong Community Network - Dual Anti-Platelet Therapy – The Dawn of New Era | Ms. Candice TONG
Organiser: HKMA Yau Tsim Mong Community Network; Chairman: Dr. CHAN Wai Keung, Ricky; Speaker: Dr. HUNG Yu Tak; Venue: Crystal Ballroom, 2/F, The Cityview Hong Kong, 23 Waterloo Road, Kowloon

1:00 PM | HKMA HKSS&H CME Programme 2018 -2019 | HKMA CME Dept.
Organiser: Hong Kong Medical Association & Hong Kong Sanatorium & Hospital; Speaker: Dr. Chan Leung Kwai, Jason; Venue: HKMA Central Premises, Dr. Li Shu Pui Professional Education Centre, 2/F, Chinese Club Building, 21-22 Connaught Road Central, HK

1:00 PM | HKMA Kowloon West Community Network - Latest Evidence on Achieving Asthma Control at Primary Setting | Miss Antonia LEE
Organiser: HKMA Kowloon West Community Network; Chairman: Dr. LAM Ngam, Raymond; Speaker: Dr. LO Chi Wai; Venue: Fulum Palace, Shop C, G/F, 85 Broadway Street, Mei Foo Sun Chun, Mei Foo

7:00 PM | FMSHK Certificate Course in Practical Obstetric Ultrasonography (5) | The Secretariat of FMSHK
Organiser: The Federation of Medical Societies of Hong Kong; Venue: Lecture Hall, 4/F, Duke of Windsor Social Service Building, 15 Hennessy Road, Wanchai, Hong Kong

8:00 PM | FMSHK Officers’ Meeting | Ms. Nancy CHAN
Organiser: The Federation of Medical Societies of Hong Kong; Venue: Gallop, 2/F, Duke of Windsor Social Service Building, 15 Hennessy Road, Wanchai, Hong Kong

9:00 PM | HKMA Council Meeting | Ms. Christine WONG
Organiser: Hong Kong Medical Association; Venue: 15 Hennessy Road, Wanchai, Hong Kong

5 WED
1:00 PM | HKMA Central, Western & Southern Community Network - Certificate Course on Psychiatry (Session 1) - Early Identification of Cognitive Impairment Made Easy With An Evidence-Based Brief Cognitive Screen for The Local Population | Miss Antonia LEE
Organiser: HKMA Central, Western & Southern Community Network; Chairman: Dr. CHAN Hau Ngai, Kingsley; Speaker: Prof. Adrian WONG; Venue: HKMA Central Premises, Dr. Li Shu Pui Professional Education Centre, 2/F, Chinese Club Building, 21-22 Connaught Road Central, HK

6:30 PM | MPS Workshop - Building Resilience and Avoiding Burnout | HKMA CME Dept.
Organiser: Hong Kong Medical Association & Medical Protection Society; Speaker: Dr. Fung Shu Yan, Anthony; Venue: The Cityview, Kowloon

7:00 PM | FMSHK Certificate Course in Renal Medicine 2018 (1) | The Secretariat of FMSHK
Organiser: The Federation of Medical Societies of Hong Kong; Venue: Lecture Hall, 4/F, Duke of Windsor Social Service Building, 15 Hennessy Road, Wanchai, Hong Kong

6 THU
1:00 PM | HKMA Kowloon East Community Network - Novel Combination of Basal Insulin and GLP1 | Miss Antonia LEE
Organiser: HKMA KLN East Community Network; Chairman: Dr. TING Ka Chiu; Speaker: Dr. YEUNG Tok Fai, Vincent; Venue: Lei Garden Restaurant, Shop No. L5-8, 1/F, Kwun Tong, No. 418 Kwun Tong Road, Kowloon

1:00 PM | HKMA Hong Kong East Community Network - Update in the Management of Idiopathic Pulmonary Fibrosis | Miss Antonia LEE
Organiser: HKMA Hong Kong East Community Network; Chairman: Dr. AU Chi Lap, Simon; Speaker: Dr. WONG King Ying; Venue: HKMA Wanchai Premises, 5/F, Duke of Windsor Social Service Building, 15 Hennessy Road, Kowloon

1:00 PM | HKMA New Territories West Community Network - Advances in Hypertension Management | Miss Antonia LEE
Organiser: HKMA New Territories West Community Network; Chairman: Dr. CHEUNG Kwok Wai, Alvin; Speaker: Dr. KO Yu Kwun, Cyril; Venue: Pak Loh Chiu Chow Restaurant, Shop A316, 3/F, Yoho Mall II, 8 Long Yat Road, Yuen Long

6:30 PM | MPS Workshop - Achieving Safer and Reliable Practice | HKMA CME Dept.
Organiser: The Hong Kong Medical Association & Medical Protection Society; Speaker: Dr. Cheng Ngai Shing, Justin; Venue: The Cityview, Kowloon

7:00 PM | FMSHK Certificate Course in Respiratory Medicine 2018 (1) | The Secretariat of FMSHK
Organiser: The Federation of Medical Societies of Hong Kong; Venue: Lecture Hall, 4/F, Duke of Windsor Social Service Building, 15 Hennessy Road, Wanchai, Hong Kong

11 TUE
1:00 PM | HKMA Tai Po Community Network - Implications of EMPA-REG OUTCOME in Asian Patients with Type 2 Diabetes | Ms. Candice TONG
Organiser: HKMA Tai Po Community Network; Chairman: TBC; Speaker: Dr. WU, Enoch; Venue: Chuichow Garden Restaurant, Shop 001-003, 1/F, Uptown Plaza, No. 9 Nam Wan Road, Tai Po

7:00 PM | FMSHK Certificate Course in Practical Obstetric Ultrasonography (6) | The Secretariat of FMSHK
Organiser: The Federation of Medical Societies of Hong Kong; Venue: Lecture Hall, 4/F, Duke of Windsor Social Service Building, 15 Hennessy Road, Wanchai, Hong Kong

12 WED
7:30 AM | The Hong Kong Neurosurgical Society Monthly Academic Meeting – Updates on Neurofibromatosis type 1 | CME Accreditation
Organiser: Hong Kong Neurosurgical Society; Chairman: Dr WONG Sui To; Speaker: Dr. YEUNG Kam Tong; Venue: Seminar Room, G/F, Block A, Queen Elizabeth Hospital

1:00 PM | HKMA Central, Western & Southern Community Network - Certificate Course on Psychiatry (Session 2) - Management of Depression and Comorbidities | Miss Antonia LEE
Organiser: HKMA Central, Western & Southern Community Network; Chairman: Dr. POON Man Kay; Speaker: Dr. MAK Wing Chit, Ivan; Venue: HKMA Central Premises, Dr. Li Shu Pui Professional Education Centre, 2/F, Chinese Club Building, 21-22 Connaught Road Central, HK
<table>
<thead>
<tr>
<th>Date / Time</th>
<th>Function</th>
<th>Enquiry / Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 WED</td>
<td>FMSHK Certificate Course in Renal Medicine 2018 (2)</td>
<td>The Secretariat of FMSHK Tel: 2527 8898 Fax: 2865 0345</td>
</tr>
<tr>
<td>13 THU</td>
<td>FMSHK Certificate Course in Respiratory Medicine 2018 (2)</td>
<td>The Secretariat of FMSHK Tel: 2527 8898 Fax: 2865 0345</td>
</tr>
<tr>
<td>14 FRI</td>
<td>HKMA Kowloon City Community Network - Management on Diabetic Nephropathy</td>
<td>Ms. Candice TONG Tel: 2527 8285 1 CME Point</td>
</tr>
<tr>
<td>15 SAT</td>
<td>MPS Workshop - Mastering Adverse Outcomes</td>
<td>HKMA CME Dept. Tel: 2527 8285 3 CME Point</td>
</tr>
<tr>
<td>18 TUE</td>
<td>HKMA Kowloon West Community Network - Management of Lung Cancer: Update in EGFR Targeted Treatment</td>
<td>Miss Antonia LEE Tel: 2527 8285 1 CME Point</td>
</tr>
<tr>
<td>19 WED</td>
<td>FMSHK Certificate Course in Renal Medicine 2018 (3)</td>
<td>The Secretariat of FMSHK Tel: 2527 8898 Fax: 2865 0345</td>
</tr>
<tr>
<td>20 THU</td>
<td>HKMA Hong Kong East Community Network - Management of Lung Cancer: Update in EGFR Targeted Treatment</td>
<td>Ms. Candice TONG Tel: 2527 8285 1 CME Point</td>
</tr>
<tr>
<td>21 FRI</td>
<td>HKMA Shatin Doctors Network - Community Elderly Nutritional Needs and Challenges</td>
<td>Ms. Candice TONG Tel: 2527 8285 1 CME Point</td>
</tr>
<tr>
<td>26 WED</td>
<td>HKMA Golf Tournament 2018</td>
<td>Mr. Allen NG Tel: 2527 8285</td>
</tr>
<tr>
<td>27 THU</td>
<td>FMSHK Certificate Course in Renal Medicine 2018 (4)</td>
<td>The Secretariat of FMSHK Tel: 2527 8898 Fax: 2865 0345</td>
</tr>
<tr>
<td>14 FRI</td>
<td>HKMA Tai Po Community Network - Management of Hypertension from Essential to Resistant</td>
<td>Ms. Candice TONG Tel: 2527 8285 1 CME Point</td>
</tr>
<tr>
<td>18 TUE</td>
<td>HKMA New Territories West Community Network - Novel Treatment in Diabesity</td>
<td>Miss Antonia LEE Tel: 2527 8285 1 CME Point</td>
</tr>
<tr>
<td>20 THU</td>
<td>FMSHK Certificate Course in Respiratory Medicine 2018 (3)</td>
<td>The Secretariat of FMSHK Tel: 2527 8898 Fax: 2865 0345</td>
</tr>
<tr>
<td>21 FRI</td>
<td>HKMA Yau Tsim Mong Community Network - Novel Combination of Basal Insulin and GLP1</td>
<td>Ms. Candice TONG Tel: 2527 8285 1 CME Point</td>
</tr>
<tr>
<td>27 THU</td>
<td>FMSHK Certificate Course in Respiratory Medicine 2018 (4)</td>
<td>The Secretariat of FMSHK Tel: 2527 8898 Fax: 2865 0345</td>
</tr>
</tbody>
</table>
Certificate Course for General Practitioners, Nurses and Health Care Providers who are interested in Cardiology

Certificate Course in

Cardiology 2018

Jointly organised by

The Federation of Medical Societies of Hong Kong
Hong Kong College of Cardiology

Objectives:

This course is designed for General Practitioners, Nurses and Health Care Providers who are interested in Cardiology. A series of lectures covering up-to-date cardiology knowledge and skill in day-to-day clinical practice.

<table>
<thead>
<tr>
<th>Date</th>
<th>Topics</th>
<th>Speakers</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 Oct</td>
<td>Cardiovascular risk assessment and management (including update in management of hypertension and hypercholesterolemia)</td>
<td>Prof. CHEUNG Man Yung, Bernard Sun Chish Yeh Heart Foundation Professor in Cardiovascular Therapeutics, Department of Medicine, University of Hong Kong, Queen Mary Hospital</td>
</tr>
<tr>
<td>22 Oct</td>
<td>Cardiac emergencies: acute pulmonary edema, acute pulmonary embolism, acute aortic disease and hypertensive crisis</td>
<td>Dr. FANG Jonathan Xinguo Resident, Cardiology and Internal Medicine, Queen Mary Hospital</td>
</tr>
<tr>
<td>29 Oct</td>
<td>Clinical approach to common cardiovascular symptoms and overview of cardiac investigations</td>
<td>Dr. KO Kwok Chun, Jason Specialist in Cardiology Private Practice</td>
</tr>
<tr>
<td>5 Nov</td>
<td>Management of heart failure</td>
<td>Dr. CHENG Yue Hong Resident, Division of Cardiology, Pok Oi Hospital</td>
</tr>
<tr>
<td>12 Nov</td>
<td>Management of acute coronary syndrome</td>
<td>Dr. LEE Kin Tong, Joe Specialist in Cardiology Private Practice</td>
</tr>
<tr>
<td></td>
<td>Management of stable angina and chronic coronary artery disease</td>
<td>Dr. LEE Ker Fai, Victor Specialist in Cardiology Private Practice</td>
</tr>
<tr>
<td>19 Nov</td>
<td>Advances in management of valvular heart disease</td>
<td>Dr. CHEUNG Shing Him, Gary Associate Consultant and the Head of Structural Heart Intervention, Department of Medicine & Therapeutics, Prince of Wales Hospital</td>
</tr>
<tr>
<td></td>
<td>Management of AF and role of LAAO</td>
<td>Dr. LUK Ngai Hong, Vincent Associate Consultant, Medical Department, Queen Elizabeth Hospital, Hong Kong</td>
</tr>
</tbody>
</table>

Date: 15, 22, 29 October and 5, 12, 19 November, 2018 (Every Monday)
Time: 7:00 p.m. – 8:30 p.m.
Venue: Lecture Hall, 4/F., Duke of Windsor Social Service Building, 15 Hennessy Road, Wanchai, Hong Kong
Language Media: English (Supplemented with Cantonese)
Course Fee: HK$750 (6 sessions)
Certificate: Awarded to participants with a minimum attendance of 70%
Enquiry: The Secretariat of The Federation of Medical Societies of Hong Kong
Tel.: 2527 8898 Fax: 2865 0345 Email: info@fmshk.org

CME / CNE / CPD Accreditation in application
Application form can be downloaded from website: http://www.fmshk.org
Answers to Dermatology Quiz

Answer:

1. The differential diagnoses include tuberculosis verrucosa cutis (TVC), lupus vulgaris, giant viral wart, mycobacteria subcutaneous tuberculosis, atypical mycobacteria and deep fungus should be ordered. If necessary, the specimen can also be sent for polymerase chain reaction (PCR) test for mycobacterium tuberculosis. In this patient, clinically TVC was the most likely diagnosis, which was supported by the histological finding of prominent epidermal changes such as hyperkeratosis, acanthosis and papillomatosis, plus tuberculous granulomas with caseous necrosis and positive AFB in the dermis. The histopathological diagnosis and clinical correlation are important because only a small percentage of cases would have positive smears or cultures in TVC.

TVC infects patients through direct inoculation of the tubercle bacilli at the sites of trauma. The areas of predilection are therefore over the buttock, knee, elbow, hand and finger. In the old days, this condition was common in Hong Kong Chinese boys over their buttocks and knees. This was mainly due to their habit of playing and squatting in the streets with open-bottom trousers, together with a high prevalence of bacilli at the sites of trauma. The areas of predilection are therefore over the buttock, knee, elbow, hand and finger. This was mainly due to their habit of playing and squatting in the streets with open-bottom trousers, together with a high prevalence of pulmonary tuberculosis and patients’ squatting habit at that time.

2. TVC is a true cutaneous tuberculosis rather than tuberculid. Screening for extracutaneous tuberculosis, especially pulmonary tuberculosis, is important. Tuberculin test, interferon-gamma release assays, chest X-ray and morning urine for AFB should also be done.

3. Combination drugs therapy should be given to all true cutaneous tuberculosis such as lupus vulgaris, tuberculosis verrucosa cutis and scrofuloderma.
SUPERB LOCATION · PURPOSE-BUILT FOR WELLNESS
INTERNATIONAL ACCOLADES FOR ENERGY EFFICIENCY & USE
INTELLIGENT CARPARK WITH AMPLE PARKING SPACES
REMARKABLE HEADROOM · RELIABLE POWER SUPPLY

THE CENTRE OF ZEN & LIFESTYLE
15 MIDDLE ROAD, TSIM SHA TSUI

LEASING HOTLINE: 2908 8625
WWW.HZENTRE.COM.HK

Disclaimer: The information contained herein was compiled in good faith, but it should not be construed as forming part of any contract or any pre-contractual representation of fact or otherwise and would-be tenants and readers are responsible for satisfying themselves, whether by inspection or other means, as to the accuracy of any specification given. The developer reserves all rights to make modifications of and changes to the overall design, elevation, layout, construction materials or colour scheme of this development project.
KEYTRUDA® (pembrolizumab) is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who are not eligible for cisplatin-containing chemotherapy.

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who have disease progression during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.

KEYTRUDA is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS ≥1%) as determined by a validated test and for patients with locally advanced or metastatic urothelial carcinoma whose tumors express PD-L1 (TPS ≥1%), with no EGFR or ALK genomic tumor aberrations. KEYTRUDA is indicated for the treatment of patients with metastatic melanoma. KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic medullary thyroid carcinoma with disease progression on or after platinum-based chemotherapy.

KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma with disease progression on or after one prior anti-programmed death-ligand 1 (PD-L1) or anti-programmed death receptor 1 (PD-1) regimen in the擅域或 above, with ≥1 prior therapies for metastatic disease.

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic melanoma who are not eligible for ipilimumab-containing regimens.

KEYTRUDA is indicated for the treatment of patients with advanced squamous cell carcinoma of the head and neck with disease progression on or after prior therapy. KEYTRUDA is indicated for the treatment of patients with PD-L1 positive non-small cell lung cancer that has progressed on or after platinum-based chemotherapy.

KEYTRUDA is indicated for the treatment of patients with metastatic renal cell carcinoma whose tumors express PD-L1 (TPS ≥1%).

KEYTRUDA is indicated for the treatment of patients with advanced Hodgkin lymphoma.

KEYTRUDA is indicated for the treatment of patients with advanced gastrointestinal stromal tumors (GIST) that have progressed on or after prior KIT or PDGFRA inhibitor therapy.

KEYTRUDA is indicated for the treatment of patients with advanced melanoma with GNAQ or GNA11 mutations after therapy with a MEK inhibitor.

KEYTRUDA is indicated for the treatment of patients with advanced Merkel cell carcinoma.

KEYTRUDA is indicated for the treatment of patients with advanced pancreatic adenocarcinoma.

KEYTRUDA is indicated for the treatment of patients with advanced unselected neuroendocrine tumors.

KEYTRUDA is indicated for the treatment of patients with advanced carcinoid tumors.

KEYTRUDA is indicated for the treatment of patients with advanced urothelial carcinoma of the bladder that has spread beyond the bladder or is recurrent after bladder-sparing treatment.

KEYTRUDA is indicated for the treatment of patients with advanced Merkel cell carcinoma.

KEYTRUDA is indicated for the treatment of patients with advanced endometrial cancer.

KEYTRUDA is indicated for the treatment of patients with advanced urothelial bladder cancer that has spread beyond the bladder or is recurrent after bladder-sparing treatment.

KEYTRUDA is indicated for the treatment of patients with advanced esophageal cancer.

KEYTRUDA is indicated for the treatment of patients with advanced squamous cell carcinoma of the head and neck.

KEYTRUDA is indicated for the treatment of patients with advanced renal cell carcinoma.

KEYTRUDA is indicated for the treatment of patients with advanced cervical cancer.

KEYTRUDA is indicated for the treatment of patients with advanced melanoma with GNAQ or GNA11 mutations after therapy with a MEK inhibitor.

KEYTRUDA is indicated for the treatment of patients with advanced Merkel cell carcinoma.

KEYTRUDA is indicated for the treatment of patients with advanced pancreatic adenocarcinoma.

KEYTRUDA is indicated for the treatment of patients with advanced neuroendocrine tumors.

KEYTRUDA is indicated for the treatment of patients with advanced carcinoid tumors.

KEYTRUDA is indicated for the treatment of patients with advanced urothelial bladder cancer of the bladder that has spread beyond the bladder or is recurrent after bladder-sparing treatment.

KEYTRUDA is indicated for the treatment of patients with advanced endometrial cancer.

KEYTRUDA is indicated for the treatment of patients with advanced esophageal cancer.

KEYTRUDA is indicated for the treatment of patients with advanced cervical cancer.

KEYTRUDA is indicated for the treatment of patients with advanced melanoma with GNAQ or GNA11 mutations after therapy with a MEK inhibitor.

KEYTRUDA is indicated for the treatment of patients with advanced Merkel cell carcinoma.

KEYTRUDA is indicated for the treatment of patients with advanced pancreatic adenocarcinoma.

KEYTRUDA is indicated for the treatment of patients with advanced neuroendocrine tumors.

KEYTRUDA is indicated for the treatment of patients with advanced carcinoid tumors.

KEYTRUDA is indicated for the treatment of patients with advanced urothelial bladder cancer of the bladder that has spread beyond the bladder or is recurrent after bladder-sparing treatment.

KEYTRUDA is indicated for the treatment of patients with advanced endometrial cancer.

KEYTRUDA is indicated for the treatment of patients with advanced esophageal cancer.

KEYTRUDA is indicated for the treatment of patients with advanced cervical cancer.

KEYTRUDA is indicated for the treatment of patients with advanced melanoma with GNAQ or GNA11 mutations after therapy with a MEK inhibitor.

KEYTRUDA is indicated for the treatment of patients with advanced Merkel cell carcinoma.

KEYTRUDA is indicated for the treatment of patients with advanced pancreatic adenocarcinoma.

KEYTRUDA is indicated for the treatment of patients with advanced neuroendocrine tumors.

KEYTRUDA is indicated for the treatment of patients with advanced carcinoid tumors.

KEYTRUDA is indicated for the treatment of patients with advanced urothelial bladder cancer of the bladder that has spread beyond the bladder or is recurrent after bladder-sparing treatment.

KEYTRUDA is indicated for the treatment of patients with advanced endometrial cancer.

KEYTRUDA is indicated for the treatment of patients with advanced esophageal cancer.

KEYTRUDA is indicated for the treatment of patients with advanced cervical cancer.

KEYTRUDA is indicated for the treatment of patients with advanced melanoma with GNAQ or GNA11 mutations after therapy with a MEK inhibitor.

KEYTRUDA is indicated for the treatment of patients with advanced Merkel cell carcinoma.

KEYTRUDA is indicated for the treatment of patients with advanced pancreatic adenocarcinoma.

KEYTRUDA is indicated for the treatment of patients with advanced neuroendocrine tumors.

KEYTRUDA is indicated for the treatment of patients with advanced carcinoid tumors.

KEYTRUDA is indicated for the treatment of patients with advanced urothelial bladder cancer of the bladder that has spread beyond the bladder or is recurrent after bladder-sparing treatment.

KEYTRUDA is indicated for the treatment of patients with advanced endometrial cancer.

KEYTRUDA is indicated for the treatment of patients with advanced esophageal cancer.

KEYTRUDA is indicated for the treatment of patients with advanced cervical cancer.

KEYTRUDA is indicated for the treatment of patients with advanced melanoma with GNAQ or GNA11 mutations after therapy with a MEK inhibitor.

KEYTRUDA is indicated for the treatment of patients with advanced Merkel cell carcinoma.

KEYTRUDA is indicated for the treatment of patients with advanced pancreatic adenocarcinoma.

KEYTRUDA is indicated for the treatment of patients with advanced neuroendocrine tumors.

KEYTRUDA is indicated for the treatment of patients with advanced carcinoid tumors.

KEYTRUDA is indicated for the treatment of patients with advanced urothelial bladder cancer of the bladder that has spread beyond the bladder or is recurrent after bladder-sparing treatment.

KEYTRUDA is indicated for the treatment of patients with advanced endometrial cancer.

KEYTRUD