Clinical Pharmacology
Brintellix takes care of more than mood

- Brintellix is a new antidepressant with Multimodal Activity\(^1,4\)
- Brintellix is efficacious in treating all the symptoms of depression (assessed by MADRS) across a range of patients\(^2-5\)
- Brintellix also significantly improves cognitive performance in depressed patients and reduces the cognitive symptoms of depression\(^2,9\) that affect most patients\(^6\)
 - These include: concentration difficulties, poor attention, problems with memory and difficulty planning\(^6-8\)
- Brintellix is well tolerated\(^4,5,10-12\)
- Patients (18-65 yrs) can start, stay and stop on Brintellix 10 mg once daily\(^4\)

References:
A willow tree-lined alley in Yunnan, dotted with pink flowers of the *rosacea* family (蔷薇).

In Chinese culture, willow represents elegance and charm. Its branches and leaves sway gracefully in the wind. Its vitality makes it easy to grow and it is often associated with the Spring season. Its bark has long been known to Chinese and ancients including Hippocrates as a remedy for aches and fever, for it contains salicin which is metabolised into salicylic acid in the human body.

Dr Kin-lun TSANG
Specialist in Neurology
Chinese New Year Message from the President

Dr Mario WK CHAK
President
The Federation of Medical Societies of Hong Kong

To start the Chinese New Year, I would like to share with you all a proverb from a famous ancient Chinese philosopher Kongzi. ‘知不務多，務審其所知；言不務多，務審其所謂；行不務多，務審其所由.’ One does not have to know everything, but he has to make sure what he knows is right; one does not have to talk a lot, but he has to be sure what he talks about is suitable; one does not have to do a lot, but he has to be sure what he does is reasonable.’ This famous quote of Chinese wisdom advises that people do not have to know, talk or do a lot. It is more important to be sure that what one knows, says, and does are right, appropriate and justified. Although written many years ago, this proverb continues to convey words of great wisdom and a moral message.

In the present computer age, everyone can easily retrieve information from the internet through a computer or mobile phone. In the present world of exploding knowledge, we have no problem in accessing the most current information. Nonetheless it is important to differentiate what is right; what is wrong and how to apply information correctly in our daily life. The above traditional wisdom is applied by the medical and health professionals today in the practice of evidence-based medicine, as well as the practice of personalised/precision medicine that was recently advocated by U.S. President Barack Obama who said "Personalised Medicine gives us one of the greatest opportunities for new medical breakthroughs we never seen".

A period of rapid advances in technology has provided a golden opportunity to gather useful data relating to a range of potentially important disease determinants in clinical decision making. Access to detailed data will enable medicine to evolve from a one-size-fits-all/trial and error model that is associated with variable clinical effectiveness and a high rate of side effects to a model that provides a precision approach, healthcare based on an understanding of the patient’s biological needs and heterogeneity, where treatment is individualized with consequent improved effectiveness and minimal side effects.

In model of precision/personalised medicine, diagnostic test usually required to select an appropriate and optimal treatment according to a patient's genetic or microbiota make up or molecular or other relevant investigation results.

Precision medicine has been successfully applied in oncology and will soon be extended to other medical fields. It is undoubtedly a great revolution in existing medical care and heralds a new era of medicine.

As medical and health professionals, can we maintain the status quo? I think all of us realise that avoiding change today will only postpone necessary change and exacerbate existing weakness. But how? I realise that the importance for any one of you to be actively involved in your related medical society early in your career; you will gain not only medical knowledge but grow your professional enthusiasm. In joining the Federation you will broaden your horizons by working with different medical, dental, nursing and allied health professionals.

Let us face this future challenge together. In the coming Chinese year of the Monkey, let us learn from the Monkey to be clever, energetic, ambitious and creative with excellent adaptation and curiosity.

On behalf of the federation, I wish all of you success in your career and happiness in your family in the coming Chinese year of the Monkey.
Explore Alaska's greatest glaciers and most beautiful scenery onboard!

Glacier Bay National Park is one of the “7 Cruise Wonders of the World” identified by Condé Nast Traveler!

7 Days Voyage of the Glacier
Sail between Vancouver and Anchorage (Whittier)
Island Princess | Coral Princess | Star Princess
Sail between May and Sep 2016

Visiting ports:
Ketchikan, Alaska | Juneau, Alaska | Skagway, Alaska |
Glacier Bay National Park, Alaska (Scenic Cruising) | College Fjord, Alaska (Scenic Cruising) | Hubbard Glacier, Alaska (Scenic Cruising)

HKD5,842 up
Taxes, Fees & Port Expenses approx: HKD1,443

7 Days Inside Passage
Roundtrip from Seattle or Vancouver
Crown Princess | Star Princess | Ruby Princess
Sail between May and Sep 2016

Visiting ports:
Ketchikan, Alaska | Glacier Bay National Park, Alaska (Scenic Cruising) | Tracy Arm Fjord, Alaska (Scenic Cruising) | Juneau, Alaska | Skagway, Alaska | Sitka, Alaska | Victoria, British Columbia

HKD5,491 up
Taxes, Fees & Port Expenses approx: HKD1,638

Discovery at SEA

Carnival Corporation Hong Kong Limited
License No. 353772
2952 8079
www.princess.com
Suite 1207, Tower 1, The Gateway, Harbour City
25 Canton Road, Kowloon, Hong Kong
This is something of a debut for clinical pharmacology after two decades of the Medical Diary. But what a debut! In this issue, I believe we have a good mix of articles demonstrating the wide scope of clinical pharmacology and therapeutics, and their relevance to every branch of Medicine. In my article, I try to define what clinical pharmacology is. Dr Desmond Yap, a nephrologist, writes about prescribing drugs in patients with kidney disease, a condition that is increasingly common because of the aging population and the availability of renal replacement therapy. Dr Joanne Chiu, an oncologist, describes the exciting horizons in the treatment of cancer. The availability of new classes of drugs to combat cancer is one of the most exciting developments in pharmacology. Biological drugs used for the treatment of cancer and rheumatic diseases have brought new hopes to patients but their prices can often be prohibitive. Dr Tommy Cheung discusses the pros and cons of cheaper biosimilars when the patents of the original biologics expire. For diabetes, the launch of the SGLT2 inhibitors represents a new landmark. This novel class of drugs controls not only diabetes but helps with weight, lipids and blood pressure management. This sounds almost like the polypill! Dr Paul Lee, an endocrinologist, takes us through the promises as well as the pitfalls. In the eyes of the law, drugs are poisons. Professor Cyrus Kumana writes about the constant need to balance risk and benefit in pharmacotherapy. Dr Patrick Leung and Dr Matthew Tsui, two emergency physicians and toxicology experts, give very practical advice and guidance on the interpretation of toxicology tests often encountered in clinical practice.

This bumper issue on clinical pharmacology would not have been possible without the dedicated support of Miss Bianca Lee and her colleagues at the Federation, and the generous support of our sponsors. At the Federation, we are very saddened by the recent death of Dr Hung Kwan Ngai, who has previously served on the Executive Committee. We were colleagues at Queen Mary Hospital. In the obituary, Dr Dawson Fong recounts his immense contribution to neurosurgery in Hong Kong.

This issue coincides with the start of the Year of the Monkey. A new year brings new hopes and heals old wounds. May I wish our readers a very happy and prosperous Chinese New Year!
NEUROPROTECTION
POWERED BY
VASCULAR
CIRCULATION

INCREASE CORONARY BLOOD FLOW

DECREASE PLATELET-ACTIVATING FACTOR

RELIEVE VERTIGINOUS SYNDROME

NEUROPROTECTION

ANTIOXIDATION EFFECTS

References:

Full prescribing information is available upon request.

Manufactured by:
Distributed by:

LF (Hong Kong) Limited - Healthcare Division
3/F, HK International Building, Phase I & II, 800 Cheung Sha Wan Road, Kowloon, HK
Tel: 2630 5600 Fax: 2637 5818
What is Clinical Pharmacology?

Prof Bernard MY Cheung
PhD, FRCP, FHKCP, FHKAM(Medicine)
Sun Chieh Yeh Heart Foundation Professor in Cardiovascular Therapeutics
Chief, Division of Clinical Pharmacology
Department of Medicine, University of Hong Kong

The most frequent question I get asked by doctors and laymen alike is ‘What do clinical pharmacologists do?’ It is a common misconception that clinical pharmacologists are clinical pharmacists with special knowledge in pharmacology. This is not altogether wrong because in the United States, many clinical pharmacologists are indeed exactly that. In Hong Kong, China, Australia and Europe however, clinical pharmacologists are usually medical doctors with a special interest in the use of drugs. Although all registered medical practitioners are entitled to prescribe, it is usually in the context of prevention or treatment of disease conditions. Within a particular specialty, there are no better persons with experience in prescribing drugs related to a given specialty than the relevant specialists. A psychiatrist, for instance, does not need to consult anyone on the drugs he or she prescribes every day. Nonetheless there is more to the clinical use of drugs than prescribing to patients in one’s own specialty. Clinical pharmacologists are concerned with the full spectrum of drugs for human use, from the development of new drugs, to the testing of drugs in clinical trials, to the monitoring of the use of drugs after they have been marketed, to the detection of adverse effects, toxicity and interactions. Selecting the most appropriate drugs in terms of risk-benefit and cost-benefit, and developing guidelines, also constitute the work of a clinical pharmacologist. Increasingly, genetic and genomic analysis are also used to predict which patients will experience therapeutic benefit or adverse effects. Moreover, clinical pharmacologists treat not only individual patients but also deal with the effectiveness and safety of drugs on a population level.

Why is there a need for clinical pharmacology? It has already been said that drug prescribing forms only one aspect of the clinical use of drugs. The clinical pharmacologist contributes to the effective and safe use of medication in many other ways. Information about drugs is strongly influenced by the pharmaceutical industry, from the types of clinical trials performed, to the dissemination of drug information, the organisation of medical meetings and advertisements in medical journals. This is counterbalanced by the package insert, which is not always carefully read by doctors, and the occasional press releases and letters to health professionals from drug regulatory authorities. The balance is uneven. Clinical pharmacologists therefore play an important role in the provision of advice about the effectiveness and safety of medications. The objectivity, which is necessary in therapeutic decisions that have to weigh up costs, benefits and risks, comes from being a practicing clinician but not necessarily the physician primarily responsible for the patient. The much admired National Institute of Clinical Excellence (NICE) and similar appraisal bodies were set up by clinical pharmacologists. NICE created a stir by putting less weight on expert opinion and more weight on clinical trial evidence and the systematic review (meta-analysis) of the evidence. Critical analysis is needed to question whether the newest drugs are genuinely the most efficacious. Even if evidence supports their superior efficacy, their higher cost means that pharmacoeconomic evaluation becomes necessary to ensure an optimum balance of costs and benefits. Clinical pharmacologists therefore contribute to policy at a local and international level, in areas such as licensing, formularies and prescribing guidelines (Table).

Roles of clinical pharmacology

- As laboratory researchers, clinical pharmacologists rank with other basic scientists as contributors to drug discovery and development.
- As reviewers and interpreters of data about medicines they stand beside epidemiologists and statisticians as contributors to drug development and understanding of drug action.
- As clinicians they teach their students, inform and advise their colleagues, and complement the activities of their colleagues in other clinical specialties as contributors to practical drug therapy.
- As policy makers they complement the contributions of their colleagues in all fields related to the use of medicines.

Can the job be done by pharmacists? The job can be done by pharmacists who have relevant training and experience, just as a pharmacist with relevant training and experience can be very effective in an anticoagulant clinic. Nonetheless a general training in pharmacy does not prepare the pharmacist to undertake the roles of a clinical pharmacologist. The best model is arguably a multidisciplinary one in which clinical pharmacologists and pharmacists work closely together.

Many clinical pharmacologists are appointed by universities and medical schools, and have clinical duties in affiliated hospitals. Universities recognise the importance of clinical pharmacology in the undergraduate medical curriculum, to train future doctors in the rational, appropriate and safe use of drugs. In the UK, this is now taken seriously and forms a crucial part of the training of the medical undergraduate and the intern. The examination of prescribing skills has evolved in recent years to be more like a car driving test with emphasis on competence and safety. Clinical pharmacology is the only clinical specialty that incorporates a significant amount of research training in its postgraduate training programme. Training in clinical trials is a compulsory element.

Apart from the undergraduate medical curriculum, clinical pharmacology is also included as part of the training of other health professionals, such as pharmacists. Pharmacy students benefit from insight into how therapeutic decisions are made in the clinical setting. Indeed, clinical pharmacology may serve as...
a bridge and crossroad between the disciplines of Medicine and Pharmacy.

A decade or two ago, the practice of medicine became more evidence based. Large randomized controlled trials and meta-analyses of these trials form the backbone of the evidence base for clinical practice. In the past, many drugs were approved on the basis of good basic science and animal data that demonstrated their mechanisms and biological effects, coupled with small clinical trials that demonstrated safety in small numbers of humans and efficacy based on a surrogate endpoint (such as blood glucose or HDL). In retrospect, the shortcomings of this approach seem obvious. With the emphasis on clinical endpoints, clinical pharmacology comes to the fore as the discipline underpinning the approval of new drugs. Despite this, clinical trials do not necessarily reflect real world clinical practice, and do not have the power to detect rare adverse effects. There is thus a need to study drug use in clinical practice, the realm of pharmacoepidemiology. Rare adverse drug effects are detected via the discipline of pharmacovigilance. The information gained from these studies is as important as the evidence base from clinical trials.

While the reporting of clinical trials tends to promote benefits, such as small gains in progression-free survival that are statistically significant but clinically insignificant, adverse effects can appear to be downplayed when presented as a long list. Indeed, pharmaceutical companies have a natural tendency to highlight the efficacy of drugs whilst sweeping drug toxicity under the carpet as much as they are allowed to. The occurrence of adverse drug effects is a major reason for medical consultations and admissions, yet drug toxicity and drug-drug interactions are neglected areas in a world that is fixated on blood tests and scans. There is an urgent need to address this hiatus. Fortunately, there is now a better pharmacokinetic understanding of drug metabolism and elimination. The integration of pharmacogenetics and pharmacogenomics into the understanding of why particular patients develop drug toxicity is the way forward.

There are also two key concepts in clinical pharmacology that are commonly misunderstood or overlooked by both the general public and the medical profession. The first is dose-response. The effect of a drug is usually dose-dependent. This means that the drug effect has to be discussed in relation to the dose. Statements like drug A is more efficacious than drug B without reference to the dose-response curve are often meaningless and may even be misleading. Secondly, the fact that all drugs are poisonous is something the public, patients, doctors, and pharmaceutical industry conveniently forget. The public demands 100% safety and zero adverse effects, whilst industry and sometimes doctors pretend to deliver it. The reality is that therapeutic decisions must always balance the risks and benefits. Clinical pharmacologists have the responsibility to speak up and inform when these concepts are overlooked.

The concept that drugs are harmful until proven otherwise can, and should, be extended to traditional, herbal and alternative medicines. The techniques originally developed to evaluate western medicines, such as the randomised double-blind controlled trial, meta-analysis, pharmacovigilance and pharmacoeconomics, can be applied to the evaluation of non-western medicines and non-pharmacological treatments. Such an evaluation is particularly important when there are firm beliefs about the efficacy and safety of the treatment.

An unintended consequence of the pursuit of large clinical trials has been the escalating expense of developing a new drug. Large phase 3 trials are extremely expensive. Thus it has recently been appreciated that finite financial resources are better spent on properly conducted phase 1 trials, so that decisions on the further development of new drugs can be made earlier, before proceeding to the expensive phase 3 trials. As a consequence, phase 1 clinical trials centres have sprung up all over the world. In Hong Kong, there are two dedicated phase 1 clinical trials centres, one each at the Prince of Wales Hospital and Queen Mary Hospital. These purpose built units are equipped and staffed to conduct first-in-man trials in patients and normal volunteers. Careful observations in such specialised facilities enable new drugs to be more fully characterized and studied before they are tested in large multicentre trials.

Although the subject is immensely important from the public’s point of view, there is a worldwide shortage of clinical pharmacologists. Young graduates may not be attracted to the subspecialty because it does not usually lead to a career in private practice. In addition, hospitals may want more front line clinicians, especially in procedure-based specialties. Yet, from the point of view of a health system, such as the Hong Kong Hospital Authority, it pays to improve the effectiveness, safety and appropriate use of medications. The money saved, the harm prevented and the appropriate treatment of patients will pay for the employment of clinical pharmacologists many times over.

There are already chips that can analyse DNA variants for susceptibility to not only disease but response (beneficial or adverse) to drugs. It is no longer difficult to imagine that the concept could become the standard of care in advanced countries, and future prescribing would have to take account of such information. As the interpretation of these results and how they affect drug prescribing is specialised, the clinical pharmacologist is likely to have an input, much as a radiologist is consulted over X-rays and scans or the microbiologist over the choice of antibiotics.

In conclusion, clinical pharmacology is the scientific study of drugs for human use. It is a vast field and includes the development of drugs, clinical trials, pharmacokinetics, drug toxicity, evaluation of drug effectiveness, adverse drug reactions, pharmacovigilance, studies of drug utilisation, clinical guidelines on drug therapy, pharmacogenetics and pharmacogenomics. It is an unconventional subspecialty within Medicine and makes an unusually important contribution to the safe and effective use of medications in man.

References
ONE Capsule. TWO Releases. Extended Symptom Control

The PPI with Delayed Release Technology for the management of GERD

- **Granule 1**
 - comprises 25% of total dose
 - released at pH 5.5 within 2 hours of dosing

- **Granule 2**
 - comprises 75% of total dose
 - released at pH 6.75 several hours of dosing

- Greater 24 hrs acid control than esomeprazole
- Can be administered with clopidogrel
- Once daily, taken with or without food

For further information, consult full prescribing information

*References:
1. Refer to the product information.
2. Refer to the product information.
3. Refer to the product information.
4. Refer to the product information.

*Disclaimer:
Information provided is intended for healthcare professionals and may contain technical terms that require expertise to understand. Please consult the product information for detailed instructions and precautions.

Takeda Pharmaceuticals (HK) Ltd.
25/F, TELAX Tower, 39-45 Connaught Road, Causeway Bay, Hong Kong
Tel: 2133 9820 Fax: 2568 2726 www.takeda.com
Drugs Prescription in Patients with Kidney Disease

Dr Desmond YH YAP
MBBS (HK), MD (HK), MRCP (UK), FHKCP, FHKAM, FRCP (Edin, Glasg)
Clinical Assistant Professor, Division of Nephrology, Department of Medicine, The University of Hong Kong

Introduction
Chronic kidney disease (CKD) is a common and important clinical entity with a growing prevalence in different populations. The kidneys are vital organs that are responsible for the maintenance of fluid and electrolyte balance, production of hormones (e.g. erythropoietin, active vitamin D), control of blood pressure, elimination of uremic toxins and the metabolism of drugs. Not surprisingly polypharmacy is common in patients with CKD. Patients with kidney dysfunction may thus be prone to substantial problems in drug metabolism and interaction, and are also more susceptible to the nephrotoxic effects of drugs. This review highlights the issues regarding drug prescription in patients with kidney dysfunction.

Effect of renal impairment on drug absorption, distribution and elimination
CKD patients are often prescribed phosphate-binders and proton pump inhibitors, both of which can affect the absorption of other acidic drugs. In patients with significant uremia, nausea and repeated vomiting can significantly reduce absorption of oral medications. In patients with nephrotic syndrome, decreased serum albumin can influence distribution of drugs that are highly protein-bound. One example of such is furosemide: a much higher dose might be required to achieve diuresis in patients who are markedly edematous. Other potential pitfalls are produced substantial fluctuations in the cloting profile of patients with significant proteinuria, and hence close monitoring of the International Normalized Ratio (INR) is advisable. Most drugs will undergo oxidation/reduction or hydrolysis before their excretion. These metabolic mechanisms may be impaired in patients with renal failure. Elimination of drugs and their metabolites are also decreased in patients with a reduced glomerular filtration rate (GFR). Drug elimination is particularly difficult in those on dialysis. In hemodialysis patients, the elimination of drugs and their metabolites are also decreased in patients with kidney dysfunction.

Dosage adjustment in patients with renal impairment
In general, dosage adjustment is according to the GFR. While serum creatinine (Cr) level is a commonly used biomarker for renal function, its application in certain patient groups can be misleading, for example in an elderly patient with reduced muscle mass or patients who are markedly edematous. Other potential pitfalls of using serum Cr to assess renal function stems from its propensity for drug interference (e.g. cimetidine can inhibit tubular Cr absorption and ascorbic acid can interfere with Cr assay). The Cockcroft-Gault Equation is a widely adopted and convenient way to estimate GFR, but is accurate only in patients with stable renal function. Use in patients with changing clinical condition and renal function may thus be difficult. The Modification of Diet in Renal Disease Study (MDRD) equation is gaining popularity for gauging GFR. The MDRD is most accurate in subjects with moderate renal impairment.

Table 1. Commonly used methods to estimate renal function and glomerular filtration rate.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Formula</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum creatinine (Cr) level</td>
<td>N/A</td>
<td>•Insensitive, becomes abnormal only when GFR is decrease halved</td>
</tr>
<tr>
<td></td>
<td></td>
<td>•Problematic in patients with reduced muscle mass or marked peripheral edema</td>
</tr>
<tr>
<td></td>
<td></td>
<td>•Certain drugs can affect tubular handling of Cr or interfere with Cr assays</td>
</tr>
<tr>
<td>Cockcroft-Gault equation</td>
<td>CrCl (mL/min) = [(140-Age)/72] x [Serum Cr (mg/dL)] x 0.85 if female</td>
<td>•Easy and convenient to use</td>
</tr>
<tr>
<td></td>
<td></td>
<td>•Satisfactory performance in patients with stable renal function</td>
</tr>
<tr>
<td></td>
<td></td>
<td>•Problematic in patients with changing clinical condition or renal function</td>
</tr>
<tr>
<td>MDRD equation (Chinese validated equation)</td>
<td>GFR (mL/min/1.73m2) = 175 x (Scr/α, 1.235 x (Age)0.413 x (0.79 if female)</td>
<td>•Equation validated in Chinese population</td>
</tr>
<tr>
<td></td>
<td></td>
<td>•Accurate in patients with moderate renal impairment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>•Less precise in extremes of renal function</td>
</tr>
<tr>
<td>CKD-EPI equation</td>
<td>GFR = 141 x min (Scr/α, 1) x max (Scr/1.159 if male, 1.944 if female)</td>
<td>•Better performance than MDRD equation in patients with higher GFR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>•Not widely adopted in many laboratories</td>
</tr>
</tbody>
</table>

GFR: Glomerular filtration rate; MDRD: Modification of Diet in Renal Disease Study; CKD-EPI: Chronic Kidney Disease-Epidemiology Collaboration
dysfunction but can be inaccurate at the extremes of kidney function. Other methods of GFR measurement include Chronic Kidney Disease-Epidemiology Collaboration (CKD-EPI) equation that is also based on the four variables used in the MDRD formula (Table 1). Previous studies report the CKD-EPI equation to show less bias than the MDRD equation in patients with higher GFR. Nonetheless the CKD-EPI equation is still not widely applied in most laboratories. Drugs that depend on significant renal elimination will require dosage adjustment in patients with kidney impairment. This can be achieved by reducing the dose or frequency of administration, depending on the characteristics of the drug. Appropriate dose modification, precautions, and monitoring can help minimize the side effects in CKD patients (Table 2). One should also review the clinical indications and consider alternative treatments before prescribing drugs with nephrotoxic potential.

Drug-induced nephrotoxicity

Non-steroidal anti-inflammatory drugs (NSAID) can cause acute or chronic renal deterioration, especially in patients with pre-existing kidney dysfunction and hence should be avoided in these patients. Some antimicrobials such as aminoglycosides, vancomycin, and amphotericin B can induce direct nephrotoxicity. In this context, therapeutic drug monitoring of vancomycin and aminoglycoside levels may help optimize the drug dosage/schedule and avoid the potential nephrotoxic effects. The administration of amphotericin B should be followed by close monitoring of renal function and electrolytes (especially potassium and magnesium levels). The use of ACEI/ARB can precipitate kidney dysfunction, especially in patients with pre-existing renal disease or renal artery stenosis. Clinicians should be alert to any renal bruits before initiation of ACEI/ARB therapy and monitor renal function soon (preferably in 1-2 weeks) after the commencement of such therapy. In general, an increase in serum Cr >15% from baseline may warrant discontinuation of ACEI/ARB. Clinicians should also be alert to hyperkalemia when ACEI/ARB is used in CKD patients. Certain drugs such as the penicillins, rifampicin, allopurinol and proton-pump inhibitors can cause renal dysfunction due to acute or chronic interstitial nephritis.

Drug-drug interaction in patients with renal disease

Patients who suffer from immune-mediated glomerulonephritis or who have undergone kidney transplantation require long-term immunosuppressive treatment, commonly with calcineurin inhibitors (CNI) such as cyclosporine or tacrolimus. CNIs are associated with acute and chronic nephrotoxicity, and some antimicrobials may cause drug-drug interactions by influencing the cytochrome P450 system. In this context, rifampicin can enhance CNI metabolism whereas macrolides or azoles can decrease it. Inappropriate adjustment of CNI dosages in these situations can precipitate kidney allograft rejection or acute CNI toxicity. Azathioprine (AZA) and allopurinol are both common drugs used in patients with immune-mediated glomerular disease or a kidney allograft. Nonetheless the concomitant administration of these two drugs is a lethal combination that can result in severe myelosuppression and hence fulminant sepsis. Patients with glomerulonephritis or a kidney allograft who require allopurinol treatment might need substitution of AZA with mycophenolic acid.

Conclusion

Absorption, distribution and elimination of drugs is altered in patients with renal failure. Nephrotoxic effects of drugs can be accentuated in patients with pre-existing kidney dysfunction. Careful consideration of clinical indications and alternatives, appropriate dosage adjustment and close monitoring of renal function and electrolytes should be exercised in patients with CKD.

References

MCHK CME Programme Self-assessment Questions

Please read the article entitled “Drugs Prescription in Patients with Kidney Disease” by Dr Desmond YH YAP and complete the following self-assessment questions. Participants in the MCHK CME Programme will be awarded CME credit under the Programme for returning completed answer sheets via fax (2865 0345) or by mail to the Federation Secretariat on or before 29 February 2016. Answers to questions will be provided in the next issue of The Hong Kong Medical Diary.

Questions 1-10: Please answer T (true) or F (false)

1. A much higher dose of furosemide is required to achieve satisfactory diuresis in patients with marked nephrotic syndrome.
2. The dosage of acyclovir should be appropriately reduced in elderly patients with renal impairment.
3. The use of PPAR-γ agonists in patients with chronic kidney disease will not precipitate fluid overload and heart failure.
4. The use of metformin in patients with moderate to severe renal dysfunction can lead to severe lactic acidosis.
5. The administration of rifampicin in kidney transplant recipients can significantly increase the drug level of calcineurin inhibitors.
6. The concomitant use of allopurinol and azathioprine can lead to severe myelosuppression.
7. The use of ACEI/ARB in patients with chronic kidney disease can aggravate hypokalemia.
8. Aminoglycoside should be avoided in patients with pre-existing renal impairment.
9. The use of COX2 inhibitors will not lead to renal deterioration in patients with chronic renal impairment.
10. The Modification of Diet in Renal Disease (MDRD) equation is most accurate for estimation of glomerular filtration rate at extremes of renal function.

ANSWER SHEET FOR FEBRUARY 2016

Please return the completed answer sheet to the Federation Secretariat on or before 29 February 2016 for documentation. 1 CME point will be awarded for answering the MCHK CME programme (for non-specialists) self-assessment questions.

Drugs Prescription in Patients with Kidney Disease

Dr Desmond YH YAP
MBBS (HK), MD (HK), MRCP (UK), FHKCP, FHKAM, FRCP (Edin, Glasg)
Clinical Assistant Professor, Division of Nephrology, Department of Medicine, The University of Hong Kong

Name (block letters): ____________________________ HKMA No.: __________________ CDSHK No.: ___________
HKID No.: __ __ - __ __ __ __ X X (X) HKDU No.: _____________ HKAM No.: ______________
Contact Tel No.: ________________________________ MCHK No.: ______________ (for reference only)

Answers to January 2016 Issue

Psychiatric Care for Chronic Pain Patients – An Update

New Treatments and Hopes for Cancer Patients

Dr Joanne WY CHIU

FHkAM (Medicine), FHKCP (Med Onc), MBBS (HK), MRCP (UK), B.Sc. (Canada), M.Sc. (Canada)

Clinical Assistant Professor, Division of Hematology and Medical Oncology
Deputy Medical Director, Phase 1 Clinical Trials Centre
Department of Medicine, LKS Faculty of Medicine

Cancer is one of the most important causes of death in the modern world, taking more than 8 million lives each year. For a solid tumor, the principle of cure has been surgical removal of the tumor mass or, occasionally, local ablative therapy. When cancer cells spread beyond the local region, the aim of treatment becomes long-term control of tumor growth with drug treatment. It is often a marathon consisting of a series of continuous treatments until the last day of life.

Cancer is a disease in which cells continue to grow uncontrollably, invading healthy tissue in the body. The traditional drug treatment, chemotherapy, attacks cells that are in the process of rapid cell division. It damages fast growing cancer cells, but also affects normal cells that undergo rapid physiological turnover. The development of chemotherapy dates back to the early 20th century when animal models of cancer were used for drug screening. Progress was nonetheless hindered by a lack of knowledge and experience in the performance of clinical trials to test potentially toxic compounds in humans. Research on vesicant war gases during World War II led to the observation that mustards could suppress cell growth of bone marrow in humans, and provided the foundation for the earliest treatment of hematological malignancy. During the post-war period, many institutions started clinical research in chemotherapy, and the first chemotherapy for a solid tumor, 5-fluorouracil, was introduced to the clinical practice in 1958. The later part of the 20th century marked the blooming of new chemotherapy. Yet, the non-specific action of these drugs and their associated toxicities prompted the need for better treatments. There was also concern about the lack of a biomarker to guide responsiveness to chemotherapy. The chance of a positive response to chemotherapy varies, from over 50% in certain cancers for first line treatment, to less than 10% in others or in refractory cases. Many patients suffer much discomfort and toxicity from chemotherapy before they experience any benefit.

With advances in technology and the ability to study tumor cells at the sub-cellular level, it has become apparent that cancer cells carry erroneous genetic material or over-express signaling proteins that drive tumor growth. Development of molecules to interfere with these specific signals began in the 1980’s and the number of targeted therapies has escalated since then. Today there are more than 60 targeted therapies that are approved by the U.S. Food and Drug Administration for treatment of cancer, and the number continues to grow. Targeted therapy can be used alone, or in conjunction with chemotherapy to improve overall efficacy. The more specific nature of targeted therapy has also revolutionized the process of drug development. Instead of giving random cancer patients a new drug with the hope that it might work, clinical trials of targeted therapy now often pre-select patients according to a disease type that has an expected molecular aberration, or pre-screen patients at recruitment for the molecular subtypes of interest. In carefully selected patients with the right molecular type, the response rate to treatment can be markedly raised. The remarkable efficacy observed in early phase studies has expedited approval for a number of targeted therapies. The time from bench-top research to clinical application can in some cases be shortened from over 10 years to 4 or 5 years. Examples of drugs that have received early approval due to an exceptional response include crizotinib for ALK-mutated lung cancer, pertuzumab for HER2-positive breast cancer, and palbociclib for hormonal-receptor positive breast cancer.

While an increasing capability to study genetic material and breakthroughs in targeted therapy continue to shape treatment algorithms, the unexpected extraordinary efficacy of immunotherapy has aroused further optimism. Melanoma is an aggressive skin cancer that responds poorly to treatment. Early phase clinical trials 10 years ago reported dramatic shrinkage of tumor in some terminal melanoma patients prescribed a class of immunotherapeutic called CTLA-4 inhibitor. This drug aims to resume the function of the immune system in clearing tumor cells. To the surprise of researchers, the tumor remained under control in responding patients, even after treatment was stopped. Some patients remained in long-term disease remission and required no further cancer treatment. Although the application of this drug is limited by its high cost and toxicities, we now know that even advanced stage cancer is potentially curable if the key to switch on our own immune surveillance system can be found. Another class of better-tolerated immunotherapy, anti-PD1 antibody, has just been formally launched in Hong Kong in December 2015. Today, the clinical application of immunotherapy has been extended to lung cancer and kidney cancer.

Many targeted therapies and immunotherapies are being actively studied in Hong Kong. The Phase 1 Clinical Trials Center is a special facility dedicated to conduction of early phase clinical trials with stringent safety monitoring. Cancer treatment is a rapidly evolving field. By participating in scientific studies, we offer our patients the opportunity to experience novel cancer treatments and benefit from them. We encourage...
patients to seek more options even at the initial stage of treatment, as many new treatments are most effective and offer best survival benefit when used early.

References

Rental Fees of Meeting Room and Facilities at The Federation of Medical Societies of Hong Kong
(Effective from October 2009)

<table>
<thead>
<tr>
<th>Venue or Meeting Facilities</th>
<th>Member Society (Hourly Rate HK$)</th>
<th>Non-Member Society (Hourly Rate HK$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peak Hour</td>
<td>Non-Peak Hour</td>
</tr>
<tr>
<td>Multifunction Room I (Max 15 persons)</td>
<td>150.00</td>
<td>105.00</td>
</tr>
<tr>
<td>Council Chamber (Max 20 persons)</td>
<td>240.00</td>
<td>168.00</td>
</tr>
<tr>
<td>Lecture Hall (Max 100 persons)</td>
<td>300.00</td>
<td>210.00</td>
</tr>
</tbody>
</table>

Non-Peak Hour: 9:30am - 5:30pm
Peak Hour: 5:30pm - 10:30pm

LCD Projector
Microphone System
500.00 per session
50.00 per hour, minimum 2 hours
FOR PATIENTS LIKE JANE

JARDIANCE PROVIDES A POSITIVE EXPERIENCE

JARDIANCE, a new SGLT-2 inhibitor for type 2 diabetes, can provide:

- Significant HbA1c reduction
- Efficacy when added to other glucose-lowering treatments, including insulin
- Additional benefit of weight loss
- Demonstrated safety and tolerability profile
- One and only SGLT-2 inhibitor proven by CV outcome trial

New

Jardiance
(empagliflozin)

CV: cardiovascular; SGLT-2: sodium glucose cotransporter 2
* JARDIANCE is not indicated for weight loss
† Weight change was a secondary endpoint in clinical trials

References:

JARDIANCE®
Presentation: Empagliflozin. Film-coated tablet 10 mg and 25 mg. Indications: Adjunct to diet and exercise to improve glycaemic control in adults with type 2 diabetes mellitus as monotherapy or as combination therapy with other glucose-lowering medicinal products including insulin. Dosage and administration: Recommended starting dose is 10 mg once daily. For patients who tolerate 10 mg and need additional glycaemic control, their dose can be increased to 25 mg once daily. Can be taken with or without food. Contraindication: Hypersensitivity to empagliflozin or to any of the excipients. Special warnings and precautions: Should not be used in patients with type 1 diabetes or diabetic ketoacidosis. In patients tolerating empagliflozin whose eGFR falls persistently below 60 ml/min/1.73 m² or CrCl <60 ml/min, the dose of empagliflozin should be adjusted to or maintained at 10 mg once daily. Should be discontinued when eGFR is persistently below 45 ml/min/1.73 m² or CrCl persistently below 45 ml/min. Should not be initiated in patients with eGFR below 60 ml/min/1.73 m² or CrCl <60 ml/min; ESRD or patients with dialysis; aged 85 years and older; severe hepatic impairment. Caution should be exercised in patients at risk for volume depletion. Temporary interruption of treatment until the fluid loss is corrected or in patients with complicated urinary tract infections. Caution in patients with NYHA III and IV cardiac failure. Avoid use in patients with rare hereditary problems of galactose intolerance, the Lapp lactase deficiency or glucose-galactose malabsorption. A lower dose of the sulphonylurea or insulin may be considered to reduce the risk of hypoglycaemia when used in combination with empagliflozin. Test positive for glucose in urine. Should be avoided during pregnancy; breast-feeding. Caution when driving or operating machines. Interactions: Diuretics; Insulin & insulin secretagogues. May decrease efficacy with inducers of UGT enzymes. Adverse reactions: Very common: hypoglycaemia when used with sulphonylurea or insulin. Common: vaginal moniliasis, vulvovaginitis, balanitis and other genital infection, urinary tract infection, pruritus (generalised), increased urination. Uncommon: volume depletion, dysuria. Note: Before prescribing, please consult full prescribing information.
2015 marks a significant year for type 2 diabetic patients in Hong Kong. With the launch of Dapagliflozin at the beginning of the year, followed by Canagliflozin and Empagliflozin towards year-end, this new class of oral anti-diabetic agent, sodium-glucose cotransporter 2 (SGLT2) inhibitors, has brought new hope for patients with type 2 diabetes mellitus (T2DM).

SGLT2 inhibitors introduce a novel, insulin independent approach to glycaemic control in T2DM. Inhibition of SGLT2, whose renal expression is paradoxically upregulated in T2DM, reduces glucose reabsorption in the proximal convoluted tubules and thereby increases glycosuria and alleviates hyperglycaemia. Various randomized controlled trials have demonstrated their clinical efficacy both as monotherapy and as add-on therapy. In general, SGLT2 inhibitors lower glycated hemoglobin (HbA1c) by 0.5 to 1% and fasting glucose by around 1 mmol/L compared with placebo. As one of the approved second anti-diabetic agents after metformin, SGLT2 inhibitor is an attractive option given its metabolic effects beyond improved glycaemic control. In contrast to most commonly used glucose lowering drugs that cause weight gain or are at most weight-neutral, SGLT2 inhibitors promote weight loss of 2-3 kg over 6-12 months. Moreover, they improve blood pressure through osmotic diuresis, with a small reduction in systolic blood pressure by around 4mmHg and diastolic blood pressure by around 2mmHg.

With the increasing use of SGLT2 inhibitors globally, some safety issues undetected during drug development have gradually emerged. In mid-2015, the Food and Drug Administration (FDA) issued a warning about the increased risk of diabetic ketoacidosis related to their use. Several plausible mechanisms were postulated to explain this association: in those on background insulin therapy in whom insulin dose was reduced in order to minimize the risk of hypoglycaemia during concomitant use of a SGLT2 inhibitor, there could be increased lipolysis and hepatic ketogenesis. Even among patients not prescribed insulin therapy, SGLT2 inhibition could increase the reabsorption of ketone bodies and thereby decrease their renal clearance. Even among patients not prescribed insulin therapy, SGLT2 inhibition could increase the reabsorption of ketone bodies and thereby decrease their renal clearance. Due to the expression of SGLT2 on pancreatic α cells, SGLT2 inhibitors could increase glucagon secretion. Although the overall risk is low, prescribing physicians should be fully aware of this potential complication related to SGLT2 inhibition, as well as a few common triggers for this adverse event that include reductions in insulin dose, intercurrent illness, dehydration, low caloric intake and prescription during a peri-operative period. Notably, since SGLT2 inhibitors can decrease the renal clearance of ketone bodies, physicians should also be cautious about the potential limitation of utilizing the presence of urine ketones to screen for ketosis, as a false negative result could delay proper management of life-threatening diabetic ketoacidosis.

In September 2015, the FDA strengthened the warning about another uncommon side effect: an imbalance in bone fracture incidence with the use of an SGLT2 inhibitor, Canagliflozin. Canagliflozin may reduce bone mineral density at both the hip and spine, and fractures can occur as early as 12 weeks following initiation of therapy. Increased parathyroid hormone level and/or decreased 1,25-dihydroxyvitamin D level related to SGLT2 inhibition were proposed pathogenic mechanisms.

Towards the end of 2015, the EMPA-REG Outcome study presented the first positive cardiovascular (CV) outcome trial that involved more than 7,000 type 2 diabetic patients with established CV disease. In this placebo-controlled study, not only did empagliflozin reach the primary endpoint in reducing the composite outcome of CV death, non-fatal myocardial infarction, or nonfatal stroke, empagliflozin was also shown to produce a 38% relative risk reduction in CV mortality. Notably, the events of CV deaths between empagliflozin and placebo diverged as early as less than 6 months after the study started. Given the osmotic diuretic effects of SGLT2 inhibitors, it has been questioned whether the reduced CV mortality could be attributed mostly to the significant reduction in heart failure-related hospitalization. Nonetheless until the results...
of CV outcome trials of other SGLT2 inhibitors are available, it remains to be seen whether this CV benefit is a class effect or a compound specific outcome.

Finally, the preliminary renal data from the EMPA-REG Outcome study, presented during American Society of Nephrology Renal Week 2015, closed the year by demonstrating that empagliflozin also significantly reduced the composite renal endpoint, which included doubling of serum creatinine, end-stage renal disease or renal death, among study patients with an estimated glomerular filtration rate less than 60ml/min. It has been suggested that SGLT2 inhibition may confer renal protection in diabetic nephropathy, in addition to the conventional renin-angiotensin-aldosterone system blockade. In experimental models, through tubulo-glomerular feedback, SGLT2 inhibition led to an increase in distal sodium delivery, with a consequent increase in adenosine-mediated afferent arteriolar vasoconstriction, decrease in glomerular hyperfiltration and thus attenuation of renal injury.9

Time flies and one year has passed. As a novel oral hypoglycaemic agent in Hong Kong, more long-term data regarding safety and clinical efficacy of SGLT2 inhibitors are eagerly awaited. Both CV and diabetic kidney disease remain the major causes of morbidity and mortality in the vast majority of type 2 diabetic patients. Given their body weight, blood pressure and glucose lowering effects, together with their published CV and potential renal benefits, albeit their uncommon urogenital side effects and recent FDA warnings, diabetologists remain hopeful that SGLT2 inhibitors will continue to be a durable and useful oral agent in the comprehensive management of T2DM.

References
3. FDA Drug Safety Communication: FDA warns that SGLT2 inhibitors for diabetes may result in a serious condition of too much acid in the blood
6. FDA Drug Safety Communication: FDA revises label of diabetes drug canagliflozin (Invokana, Invokamet) to include updates on bone fracture risk and new information on decreased bone mineral density.

Radiology Quiz

Dr Kenneth KY CHEUNG

Department of Radiology, Queen Mary Hospital.

Background:
A 73 year old gentleman with a past history of hypertension and diabetes mellitus presented to his GP with worsening left abdominal pain.

Questions:
1. What are the findings from the AXR? (Figure 1)
2. What is the appropriate management?
3. What further imaging is required for accurate delineation?

(See P.39 for answers)
NEW insulin independent treatment for type 2 diabetes

A Novel Way to Control Excess Glucose - Remove it

FORXIGA™, a first-in-class, highly selective, SGLT2 inhibitor, removes excess glucose1 and:

- Attains2 and sustains3 Hba1c reductions
- Provides the additional benefits of weight loss1 and a reduction in blood pressure1
- Has low incidence of hypoglycemia4
- Allows convenient once-daily dosing with a 10-mg tablet, regardless of meals1

LOWER Hba1c
REDUCE WEIGHT

REMOVE EXCESS GLUCOSE

References
1 Frequency of hypoglycemia depends on the background antidiabetic therapy used. SGLT2 = sodium-glucose cotransporter 2.
2 FORXIGA1 is not indicated for the management of obesity or high blood pressure.

FORXIGA
AstraZeneca Hong Kong Limited
18A, Shop On Centre, 44-50 Harbour Road, Wanchai, Hong Kong
Tel: 2420 7388 Fax: 2420 6788
www.astrazeneca.com.hk

*Data on file. ©AstraZeneca 2014. Printed in Canada. 0.044055.51.9. 06.17.17. 0.044055.51.9. 06.17.17. 0.044055.51.9. 06.17.17. 0.044055.51.9. 06.17.17.
Use and Interpretation of Toxicology Tests with Clinical Wisdom

Dr LEUNG Siu Chung
MBBS (HK), CME-certified (1 July 2015 to 30 June 2018)
Resident, A&E Department, Queen Mary Hospital

Dr TSUI Sik Hon
FRCP (Edin), FHKAM (Emergency Medicine)
COS, A&E Department, Queen Mary Hospital

Introduction

Fuelled by the recent concern about lead exposure from drinking water drawn from water boilers and water pipes made from lead-containing welding material, concerns about environmental contamination with toxins and heavy metals have attracted much media attention. Whilst chronic exposure to potentially toxic substances remains a public health if not a political concern, it is only part of the spectrum of clinical toxicology. The acute and chronic effects of substance abuse and harmful use of medicinal products also provoke attendance at emergency departments, methadone clinics, substance abuse clinics, and toxicology clinics in the public sector. With increased service availability, laboratory toxicology tests are becoming increasingly popular in the hospital, outpatient and commercial settings. Nonetheless medical practitioners may face a challenge when confronted by worried patients with seemingly alarming reports, usually issued by commercial toxicology laboratories.

This article will address some of the pitfalls and give advice on the interpretation of toxicology test results.

In contrast to internal medicine that emphasises individualised care for a particular patient, clinical toxicology may be perceived as “external medicine” wherein the adverse effects of an environmental, pharmaceutical, venomous or foreign substance are studied. Nonetheless the approach to patients with suspected poisoning is not dissimilar to that for patients with other medical conditions. Diagnosis of poisoning should be made primarily on a clinical basis with recording of a thorough history of exposure, and elucidation of symptoms and physical signs. Constellations of clinical features constitute toxic syndromes (toxidromes) caused by certain agent classes, and recognition of such is useful to exclude some unrelated causes before ordering further investigations.

General tests such as blood glucose measurement, pulse oximetry, electrocardiography, serum electrolytes with or without calculation of anion gap, urine pregnancy test for female patients of reproductive age, and focused quantitative assays will usually suffice in the management of poisoned patients. Ancillary laboratory toxicology tests should be specific to the problems that are clinically suspected. In addition, the clinical role of “treat the patient, not the numbers” still holds true.

The American College of Medical Toxicology and The American Academy of Clinical Toxicology supported the Choosing Wisely® initiative that endorsed the list of “Ten Things Physicians and Patients Should Question” about clinical toxicology. Heavy metal screening, for example, should not be ordered to assess non-specific symptoms in the absence of known excessive exposure to metal. Exposure to metals in the environment per se does not equate to poisoning. Dose, duration of exposure, and individual susceptibility should be taken into account. Indiscriminate testing often leads to misleading results, and unnecessary fear and therapy when they fall outside the “normal” range.

Beside urine immunoassays

Immunoffassay-based urine tests provide the advantages of good bedside accessibility, non-invasive nature of specimen sampling, instantly available results, easily obtainable kits and relatively low cost. Many are equipped with multi-drug panels that enable a number of drugs of abuse to be screened from a single sample by lateral flow chromatography. One example is the Alere ABON™ One-step Multi-drug Tests (Alere Inc., Waltham, Massachusetts, United States). The calibrator of each drug item tests the parent compound or the respective metabolite. Once the antibodies of the binding sites are saturated, no labelled antibodies are retained in the capture zones, causing disappearance of the corresponding marking. While disappearance of a marking implies a positive result, incomplete disappearance of the marking, or a “faint line” should be interpreted as a negative result. This is exactly the opposite to commercially available urine pregnancy tests where presence of marking represents a positive result. The test is easy to read with the naked eye. The shortcoming nonetheless is the qualitative nature of these tests that represent only exposure in a highly variable time window (2-30 days or more depending on the analyte and use pattern).

Some commonly encountered drugs of abuse or malicious use such as gamma hydroxybuterate (GHB) and ketamine are not detected by a routine multi-drug screening panel. Immunassay is also subject to cross-reactivity with other substances. For example, the kit may be falsely positive for tricyclic antidepressant in a patient prescribed diphenhydramine, quetiapine, carbamazepine, chlorpromazine, or cetirizine. A benzodiazipine panel typically screens for the metabolite oxazepam, but can be falsely negative for lorazepam and alprazolam because they are not metabolised to oxazepam. Such non-specific screening may confuse the interpreting clinician about the true culprit agent. A hypothetical case can be used for illustration: a known opioid abuser presents with psychomotor agitation, fever, hypertension,
tachycardia, mydriasis and diaphoresis. Bedside urine multi-drug panel testing shows positive results for methamphetamine, morphine, and methadone. The most probable causative agent for the acute sympathomimetic toxidrome is methamphetamine, a central nervous system stimulant; positive results for morphine and methadone indicate exposure only. Based on the clinical picture and supplemented by knowledge of the bedside urine immunoassay results, the attending physician should treat the patient with cooling techniques, rehydration, and titrated doses of a sedative such as a benzodiazepine. Some centres have challenged the clinical applicability of routine qualitative urine toxicology screening while some reserve their use for specialist staff.7, 8

New psychoactive substances (NPS) constitute an emergent challenge to physicians, toxicologists, and drug controlling authorities worldwide. They are structural or functional analogues of controlled substances, designed to mimic their desired pharmacological effects. Structurally speaking they are classified as cannabinoids (e.g. cannabicyclohexanol, 5F-AKB48, JWH-018, JWH-073, HU-210), substituted phenylethylamines (e.g. alkylated or fluorinated phenylethylamines, cathinones, mephedrone, methylene, α-PVP, MDPV, 211-NEOMe), or synthetic opioids (e.g. MT-45, AH-7921). They may be marketed as plant food, bath salts, or research chemicals with cautionary statements such as “not for human consumption” to circumvent law enforcement and regulatory control. These “designer drugs” are not detectable by a bedside urine immunoassay kit or routine laboratory toxicology screening. They require a laboratory with expertise, sophisticated instruments such as high performance liquid chromatography-mass spectrometry (HPLC-MS) and a comprehensive drug library for detection. In Hong Kong, such standards can only be achieved by the Toxicology Reference Laboratory of the Princess Margaret Hospital and the toxicology laboratories of certain tertiary hospitals.7 Consultation with a chemical pathologist is necessary to ensure optimum utilisation of these high-end services.

Commercial hair and nail analysis: not recommended

Hair and nail analyses may be offered by some commercial laboratories. They may be marketed as a reference to one’s general nutritional and health status, and enable doctors to determine if mineral imbalances or heavy metals in the body are a potential cause of a patient’s symptoms. This is not evidence based. While hair analysis may be applicable in a specific population group to determine exposure to a very specific toxin in a forensic or occupational settings, in general it provides only limited information about environmental exposure and does not address the questions about potential health effects. One of the few known potential applications is to determine whether women of reproductive age have been recently exposed to methyl mercury (at a level that would give rise to concern) by consuming contaminated fish. Nonetheless the presence of methylmercury in maternal hair does not provide substantial evidence to support causation of foetal developmental effects on an individual level. Even if the substances of interest are demonstrated in hair, linkage to endogenous or exogenous exposure cannot be established. An expert panel convened by the Agency for Toxic Substances and Disease Registry (ATSDR) in the United States determined that for most substances, insufficient data existed to allow prediction of health effects based on their concentration in hair.10

There is no international consensus regarding standard procedures for collecting, washing, and analysing hair samples. Hair grows at a very slow rate (0.35 mm daily for a normal scalp)9 and analysis is subject to influence by shampoos and dyes, disproportional distribution of substances of interest in hair and various body compartments. For example, a seemingly high-normal content of zinc may preclude the diagnosis of zinc deficiency, but zinc content can be low at the tissue level and adversely affect protein and nucleic acid metabolism.12 Determination of a reference range for elements in hair and nails requires internal and external validation of data by accredited laboratories, and adaptation of standards and regulations by government agencies and professional bodies.13 Currently no standardised “normal range” of substances and trace elements exists for hair and nail samples. Values outside an individual laboratory reference range do not imply toxicity and need for treatment. There has been no population based study of the reference range for heavy metals and trace elements in hair and nails. A local case series of three children with hair samples sent to overseas centres for analysis revealed “abnormal” results for multiple elements. Unnecessary chelation therapies were nonetheless subsequently stopped following additional standard diagnostic tests.14 Using a questionable test in patients with non-specific symptoms may produce false positive results and is vulnerable to medical fraud, as toxicology test services are potentially questionable test in patients with non-specific symptoms.15 Policies and position statements by the American Medical Association and the Hong Kong College of Paediatricians have opposed the use of hair analysis to detect heavy metal exposure.16, 17

Hair or nail testing for heavy metal screening should be discouraged in patients with nonspecific symptoms.
Again, proper clinical assessment for potential exposure to metals must include the precise exposure history including possible sources, route and dose of exposure, and symptoms present. A targeted physical examination to identify relevant physical signs should be performed before ordering tests based on clinical suspicion. Non-specific hair and nail tests for multiple metals may subject patients to potentially harmful diagnostic mislabelling and subsequent detrimental therapy.³

Laboratory report with extensive list of “recommendations”: beware

Clinicians should be particularly careful if the laboratory report is supplemented by a long list of recommendations of supplements, vitamins, minerals, enzymes, or animal organ extracts; a long list of alleged "possible medical conditions" if any one of the substances lies outside the "reference range". It contradicts the foundation of medical practice in which relevant laboratory tests for a suspected condition should only follow proper history taking, and physical examination with some simple bedside investigations. The practice of prescribing therapy without a proper assessment and diagnosis should be discouraged.

Say no to test reports from “provoked” urine specimen

Heavy metal is a common concern among parents who are distressed by their children’s behavioural issues. Some may seek a clinician’s opinion about an “abnormal” result from a commercial laboratory. Patients may have been given a chelating agent, such as DMPS (2,3-dimercapto-1-propanesulfonic acid), DMSA (meso-2,3-dimercaptosuccinic acid), or EDTA (ethylenediaminetetraacetic acid), before a specimen was saved. Chelation is an artificially enhanced affinity of chelating ligands for a metal ion, and can sequester metals from the body, usually in urine. Urine samples collected after chelation are said to be “provoked”. Clinicians are advised to interpret such manipulated results with great caution.

There are standardised, clinically-proven and well validated methods to measure the presence of heavy metals in the body. Using mercury as an example, the patient should be advised to terminate potential sources of exposure, such as seafood, cosmetics and herbs, 1 to 2 weeks before measurement to reflect the exposure more accurately. A 24-hour urine sample, not a spot or a 4-hour or 6-hour sample saved within a truncated time frame, should be saved to avoid the influence of hydration status and food intake. Nonetheless “provoking” means mobilising the metals from other body compartments to urine using chelating agents, and the rate of mobilisation is greatest in the first few hours. This will cause a falsely elevated concentration, with risks of inappropriate diagnosis and erroneous administration of chelation therapy. Although a urine specimen is appropriate to screen for exposure to inorganic or elemental mercury that has a short half-life in blood, a whole blood mercury level is the preferred measurement for organic mercury that is excreted primarily in faeces.⁴

To date, there are no externally validated reference ranges for heavy metal concentrations in urine with a “provoked” urine sample. Chelation therapy based on these results is not evidence-based and potentially harmful. Numerous unfounded claims for the health benefits of chelation therapy have been made by various bodies, such as a reduction in cardiovascular risks,¹⁹ improved quality of life in patients after heart attack,²⁰ improvement in peripheral vascular disease,²¹ treatment for autism,²² and cancer.²³ None of these claims has been substantiated by well-designed clinical trials.

Inappropriate use of chelating agents involves risks. Side effects may arise even from appropriate chelation therapy, and include dehydration, hypocalcaemia, renal impairment, deranged liver function, hypotension, allergic reactions and essential mineral deficiencies. Inappropriate chelation, by itself a costly burden, imposes the risk of harm, neurodevelopmental toxicity, teratogenicity and death.⁵ A case of Stevens-Johnson syndrome in a child with chronic mercury exposure and DMPS therapy has been reported.²⁴

For any doubts, consult an expert

The Hong Kong Poison Control Network was established in 2007, with joint collaborative efforts by the Hospital Authority (HA), the Department of Health and the Chinese University of Hong Kong. The Hong Kong Poison Information Centre located at the United Christian Hospital provides a 24-hour telephone consultation service to local healthcare professionals. As part of the poisoning surveillance, it receives reports of all poisoning cases from public emergency departments. Clinical toxicology clinics are established at the Prince of Wales Hospital, United Christian Hospital, and Queen Mary Hospital, and are open to referrals from local medical practitioners.
Conclusion

Increased health awareness of patients as well as diagnostic vigilance among health professionals are expected to contribute to an increased demand for toxicology tests in the foreseeable future. Clinical judgement remains the most reliable weapon in successful poisoning management. Physicians should be familiar with the implications and limitations of tests to be arranged. To have a meaningful result, the ordered tests should be based on clinical suspicion and processed using standardised methods in accredited laboratories. Tests on a “provoked” urine sample or a sample collected during a truncated collection period are unreliable. Consultation with an expert should be considered when there is any doubt about the care of a patient with confirmed or suspected poisoning.

References

THE WORLD’S MEETING PLACE

HONG KONG
ASIA’S WORLD CITY

As Asia’s premier destination for meetings, incentive travel, conventions and exhibitions, Hong Kong is where you can turn boundless potential into reality. Providing sophisticated infrastructure, professional services and more, this gateway to China ensures success for the most important events in the world.

mehongkong.com
Balancing Risk and Benefit in Drug Therapy

Prof Cyrus R Kumana
BSc, MB, FRCP (Can, Lond, Edin, Glasg), FHKCP, FHKAM
Department of Medicine, The University of Hong Kong

Balancing risks against benefits is a universal conundrum for all living creatures. It applies to all aspects of life and has wide ranging connotations that extend to virtually all manner of interventions affecting many facets of life, whether relevant to individuals and/or communities. For example, one may opt for the greater good of the greatest number rather than the greater good of any one individual. Similarly, behavioural reactions such as fighting or waging war to achieve perceived desirable gains at the risk of possible harm also involve balancing acts, as do the social habits and political policies we opt to follow or enact. Balancing the benefits and risks of therapeutic interventions is a very special kind of dilemma that is increasingly based on the results of published clinical trials that may not be truly representative of routine clinical practice in the hospital or the community. In the absence of any other alternatives, and provided such studies are peer-reviewed, they nevertheless provide at least a modicum of evidence to support decisions. Against this background, this article concentrates on a very narrow area, namely, balancing the risks and benefits conferred by drug therapy in humans.

In man, all such considerations ultimately entail judgmental decisions and to a variable extent they are based on subjective perceptions as well as objective data. Prevailing patient circumstances (geography, ethnicity/genetics, affordability, convenience, quality of life issues) inevitably have an influence. This means that the judgements made can differ between places and between persons, depending on the population or individual to be targeted. Notwithstanding this caveat, the following pages address several of the most important pertinent principles about this topic, by reference to iconic studies in which these issues were critical.

Evaluation of Outcomes: In any exercise to balance benefits and risks of drug therapy it is imperative to concentrate on outcomes. In this context, it is particularly important to recognize the fallacy of relying on proposed surrogate markers as opposed to hard outcomes, especially as resorting to surrogates often enables statistically significant ‘benefits’ to be inferred with very small patient numbers, thereby obscuring important effects on hard outcomes. For example, in the two trials known by the acronym CAST (Cardiac Arrhythmia Suppression Trials I & II)\(^2\) and many others, antiarrhythmic drug treatment was superior to placebo in the suppression of asymptomatic ventricular arrhythmias. Yet fortuitously, due to recruitment of sufficient patient numbers, paradoxically increased arrhythmic mortality became apparent. Assessing benefits exclusively in terms of the primary endpoint is another important shortcoming, as failure to consider all other important outcomes of interest could result in undesirable consequences. This principle is exemplified in one of the first large-scale, placebo-controlled, randomized, double-blind scale trials of lipid lowering therapy that involved 10,627 healthy male adults with a high cholesterol level.\(^3\) After treatment for an average of 5.3 years, there was a statistically significant 17% reduction in fatal and no-fatal myocardial infarction (the primary outcome) among those prescribed regular oral clofibrate. Nonetheless active treatment was also associated with a statistically significant 19% increase in all-cause mortality. Thus, whilst clofibrate recipients enjoyed a favourable impact on the outcome of interest, they also endured an excess of deaths due to unrelated causes (whatever the reason). The importance of intention to treat outcome analyses became an established strategy after publication of the study with the acronym ART (Anturan Reinfarction Trial).\(^4\) The trial was heavily criticised for its reliance only on a per-protocol analysis of outcomes. This double-blind, randomized trial that involved 1558 post-myocardial infarct patients was terminated early, as it was inferred that the benefits of therapy with Anturan (suphinpyrazone, a uricosuric with anti-platelet activity) were so compelling that to withhold giving it to the controls would be unethical. Basically, the ART investigators carried out a so-called efficacy analysis after a mean patient follow-up of 16 months, whereby outcomes were only counted if they ensued 7 days after starting treatment (the time taken for Anturan’s antiplatelet activity to become established) and patient compliance with therapy was acceptable. Based on this analysis, actively treated patients fared very much better than the controls. However, it transpired that there was an excess of early deaths (within the first 7 days) among Anturan recipients. An efficacy analysis can only assess benefits or harm in those who take the treatment as intended, whilst an intention-to-treat (or effectiveness) analysis assesses outcomes in those to whom the treatment is offered, which is after all what really matters.

Absolute versus Relative Benefits of a Drug: An important aspect when balancing the benefits and risks of drug therapy is the distinction between relative and absolute values. Only the latter can enable clinicians to make genuinely informed decisions. Physicians generally understand parameters such as RRR (Relative Risk Reduction) and its converse RR (Relative Risk), sometimes expressed as percentages. Nonetheless doctors are not necessarily mathematically adept and so...
often find it difficult to come to terms with figures such as 0.086, which is the ARR (Absolute Risk Reduction) for myocardial infarction or coronary heart disease death derived from the 4S study of high risk patients treated with simvastatin for an average of 5.4 years. In contrast, it is easier to comprehend a NNT (Number Needed to Treat) of 12 (i.e. one patient avoiding such an event for every 12 who are treated), that is another way of expressing the absolute risk reduction over the same period.

Moreover, this parameter can be made even more meaningful by adjustment for treatment duration; the NNT/year value in the 45 trial was 64. In the AFFIRM trial of rhythm versus rate control for atrial fibrillation, derivation of NNTs (more correctly ‘number needed to harm’ or (NNH)) for rhythm control can be particularly revealing for comparing risks. In the latter trial, in rhythm control patients the calculated RRs for hospitalization and for Torsade (a drug adverse effect) based on the raw data was 112 and 598%, respectively, which might suggest that Torsade was a much more prevalent complication. On the contrary, the respective NNH/year values were 47 and 712, indicating that for every 47 patients assigned to rhythm control 1 more was liable to be hospitalized per year, whilst for Torsade (a complication that is much less common) the corresponding figure was 712.

Balancing Benefits versus Harm to Society: One such area is consideration of value for money in terms of drug expenditure, especially for medicines that are very costly and achieve very limited gains (alluded to in Professor BMY Cheung’s article). This facet of risk/benefit balancing is quite commonly undertaken in public hospitals, where it may be easier to implement/mandate such policies than elsewhere. An example is the automatic substitution of generic (or even bio-similar) drugs that have been reliably validated for comparable safety and efficacy, so as to accrue cost savings that can be expended for other purposes. Yet another facet of benefitting society without jeopardising the safety of individual patients involves so-called Antibiotic Stewardship Programmes that have been set-up internationally as well as locally. Such programmes aim to curtail their profligate use and reduce undue influence by pharmaceutical manufacturers, in an attempt to curb the development and spread of antibiotic resistance for the greater good of society. Like automatic substitution, these strategies usually evolve in hospitals or academic institutions, but it is possible that all such initiatives can have a trickledown effect on prescribing behavior at a community level.

Conclusion: Balancing the benefits and risks of drug therapy is a judgmental decision that must take stock of each patient’s circumstances in the light of available evidence. Notably, i) deciding whether the benefits of a treatment can outweigh the risks depends on efficacy analyses, ii) whether such benefits do outweigh risks in those to whom it is offered depends on intention to treat (effectiveness) analyses, and iii) deciding whether such treatment is worthwhile depends on NNT (and NNH) values.

Finally, the efficiency of arriving at appropriate drug therapy decisions may also be facilitated and/or enhanced by drug therapy stewardship programmes and automatic drug substitution policies.

References

† NNTs can also be used to describe absolute risk reductions or absolute risks following one-off interventions, e.g. In the NINDS trial of thrombolysis for acute ischaemic stroke, the calculated NNH for sustaining a fatal or symptomatic intracranial bleed within 36 hours turns out to be 17.

* The RR and NNH/year values for Torsade are not shown in reference 8 but can be readily calculated.
Experience Samsca® promotes electrolyte-free water clearance

- Direct antagonism of the V2-receptors increases urine water excretion, resulting in:
 - An increase in free water clearance (aquaresis)
 - A decrease in urine osmolality
 - An increase in serum sodium concentration

Indication

SAMSCA® is indicated for the treatment of clinically significant hypervolemic and euvoletic hyponatremia (serum sodium <125mEq/L or less marked hyponatremia that is symptomatic and has resisted correction with fluid restriction), including patients with heart failure and Syndrome of Inappropriate Antidiuretic Hormone (SIADH).

Pooled SALT (Study of Ascending Levels of Tolvaptan in hyponatremia): analysis of mean serum sodium (±SD, mEq/L) by visit

Patients with baseline serum sodium < 135 mEq/L

<table>
<thead>
<tr>
<th>Time</th>
<th>Treatment Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td></td>
</tr>
<tr>
<td>8th day</td>
<td></td>
</tr>
<tr>
<td>11th day</td>
<td></td>
</tr>
<tr>
<td>18th day</td>
<td></td>
</tr>
<tr>
<td>25th day</td>
<td></td>
</tr>
<tr>
<td>30th day</td>
<td></td>
</tr>
<tr>
<td>1-week follow-up</td>
<td></td>
</tr>
</tbody>
</table>

Further information available upon request.
Are We Ready to Use Biosimilars in the Treatment of Rheumatic Diseases?

Dr Tommy Tsang CHEUNG
MBBS(HK), MRCP (UK), FHKCP, FHKAM (Medicine)
Clinical Assistant Professor
Division of Clinical Pharmacology and Therapeutics
Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong

Introduction

The introduction of biologics has revolutionized the treatment of rheumatic diseases, especially for patients with inflammatory arthritis. Biologics not only improve the clinical outcomes, they also enhance quality of life. Nonetheless the overall number of prescriptions for biologics remains limited when compared with that for chemical drugs because biologics are far too expensive. In 2012, the total annual sales of the top 3 TNF-α inhibitors for rheumatic diseases reached US$ 30 billion per year. This is equivalent to a financial burden of US$ 10,000 to 30,000 per patient per year.

Since many patients are deprived access to biologics due to financial constraints, many developing countries have manufactured ‘bio-copies’ (Table 1). These products cannot be considered biosimilars because comparative analytical or clinical studies with the reference biological products are lacking. Nonetheless following the expiry of the patent for the first TNF-α inhibitor, infliximab, many manufacturers have sought to develop ‘official’ follow-on biological products, known as biosimilars. Both the European Medicines Agency (EMA) and the Food and Drug Administration (FDA) have published regulatory guidelines on biosimilars to ensure comparability with the reference biological products, in terms of protein structure, pharmacological properties, clinical efficacy and safety.

The introduction of biosimilars in clinical use may substantially reduce the burden on the public health system, and improve access to these effective but yet expensive agents.

Table 1. Bio-copies currently in use for the treatment of rheumatic diseases (Not subjected to EMA/ FDA standards for comparability at the time of approval)

<table>
<thead>
<tr>
<th>Reference biologicals</th>
<th>Bio-copies</th>
<th>Manufacturers</th>
<th>Marketed countries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etanercept</td>
<td>Yisaipu</td>
<td>Shanghai CP Goujian Pharmaceutical Co.</td>
<td>China</td>
</tr>
<tr>
<td>Etanercept</td>
<td>Etanar</td>
<td>Shanghai CP Goujian Pharmaceutical Co.</td>
<td>Colombia</td>
</tr>
<tr>
<td>Etanercept</td>
<td>Infinitam</td>
<td>Probiomed</td>
<td>Mexico</td>
</tr>
<tr>
<td>Rituximab</td>
<td>Kikuzubam</td>
<td>Probiomed</td>
<td>Bolivia, Chile, Mexico, Peru</td>
</tr>
<tr>
<td>Rituximab (Withdrawn)</td>
<td>Reditux</td>
<td>Dr. Reddy’s Laboratories</td>
<td>Ecuador, Bolivia, Chile, Paraguay, Peru, India</td>
</tr>
</tbody>
</table>

Before we prescribe biosimilars to our patients, there are a few issues that we need to address. This article will discuss the manufacturing process for biosimilars, the regulatory requirements for their approval, issues of indication extrapolation and interchangeability between the reference biological products and biosimilars.

Are biosimilars structurally identical to the reference biological products?

Unlike a chemical drug, which is typically manufactured through chemical synthesis, the production of a biological product relies on a sophisticated manufacturing process. It is usually manufactured in a living system such as a microorganism, plant or animal cell. The recent advancement in biotechnology has enabled many biological products to be produced by recombinant DNA technology. They are a large and complex protein with well-characterized conformational structure, determined by the primary amino acid sequences and post-translation modifications.

A subtle change in the manufacturing process, such as using different growth media or operating condition, can significantly alter the post-translational modifications of the protein molecule (Figure 1). Post-translational modifications e.g. glycosylation, methylation, oxidation and deamidation, are key factors that determine the tertiary and quaternary structure of the biological product, that in turn may affect its affinity, functional activity and immunogenicity.
If the manufacturing processes of the reference biological product require modification, the manufacturer must carry out extensive analysis to demonstrate the comparability of the biological product. Even though the manufacturing process is highly regulated, micro-heterogeneity is still common in different batch productions.

Once the patent of the reference biological product has expired, biosimilar manufacturers can gain knowledge of its amino acid sequence, although they will not be given the proprietary manufacturing data. Manufacturers of a biosimilar will likely follow a different manufacturing process. Therefore, development of a biosimilar with an identical conformational structure to the reference biological product is virtually impossible.

Although recent advances in analytical techniques enable biological products to be extensively characterized with respect to their physiochemical and biological properties, such as higher order structures and functional characteristics, current analytical methodologies may not be able to detect all relevant structural and functional differences between a biosimilar and its reference biological product. In addition, there may be incomplete understanding of the relationship between the structural attributes and its clinical performance. Clinical trials are mandatory to demonstrate that no clinically meaningful difference exists between the biosimilar and its reference biological product.

What are the requirements for approval of biosimilars?

Europe was the first region to establish a specific regulatory approval process for biosimilars. The “concept of similar biological medicinal product” was adopted by the European Union legislation in 2004 and came into effect in 2005. The EMA developed guidelines on biosimilars and published product specific guidelines on monoclonal antibodies in 2012. Following the EMA, the World Health Organization (WHO) published guidelines to present globally acceptable principles for biosimilar approval. These guidelines represented an important step in ensuring consistency in the evaluation and regulation of biosimilars. Several countries have already adopted the principles to supplement their own guidelines for biosimilar approval. The United States has lagged behind Europe in this field, as detailed guidelines on the assessment of biosimilarity were only published in 2012 by the FDA.

According to these guidelines, it is mandatory for the manufacturers of biosimilars to demonstrate adequate comparability with the reference biological products in terms of the pharmacological characteristics and its reference biological product.

In addition to the analytical characterization of biosimilars, comparability should also be confirmed by adequately powered, double blind, randomized controlled trials, as it is the only way to evaluate any clinically meaningful difference between a biosimilar and its reference biological product. It is important to define the main outcome measures and dosage used for a particular indication that is known to be sensitive enough to detect potential differences between the biosimilar and its reference biological product.

Once the endpoint has been selected for comparison, a decision on the appropriate trial design should be made i.e. equivalence or non-inferiority design. The choice of the design has implications for both the sample size needed, as well as the interpretation of data. The equivalence design is preferred by the EMA and FDA because it follows the concept of comparative assessment more closely. In essence, equivalent efficacy of two medicinal products means they have similar efficacy, and any observed difference is of no clinical relevance.

Selection of the primary efficacy endpoint and statistical design of the confirmatory clinical trial is a multi-step process that requires a clear understanding of the comparability margin. It should represent the largest difference in efficacy that would not matter in clinical practice. By its nature, the comparability margin for any given efficacy endpoint is a clinical judgment and often is not well established, so choice of margin size must be well justified, usually based on a combination of expert opinions and published analyses.

Table 2. FDA and EMA Requirements for the approval of biosimilars and the analytical assays that can be used

<table>
<thead>
<tr>
<th>Structural Characteristics</th>
<th>FDA & EMA Requirements</th>
<th>Analytical assays that can be used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amino acid sequence</td>
<td>Must be identical</td>
<td>RP-HPLC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LC-ESI-MS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LC-ESI-MS peptide mapping</td>
</tr>
<tr>
<td>Higher order structure</td>
<td>Must be as similar as possible to the reference biological product, which do not impact upon clinical efficacy, safety and immunogenicity</td>
<td>LC-ESI-MS peptide mapping</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elman assay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FTIR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Antibody conformational array</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X-ray crystallography DSC</td>
</tr>
<tr>
<td>Post-translational</td>
<td></td>
<td>LC-MS peptide mapping CE-SDS</td>
</tr>
<tr>
<td>modifications</td>
<td></td>
<td>HPLC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HPAEC-PAD</td>
</tr>
<tr>
<td>Potency</td>
<td>Must match with the reference biological product</td>
<td>ELISA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cell based neutralization assay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cell based apoptosis assay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cell based CDC assay</td>
</tr>
</tbody>
</table>

Is extrapolation of clinical data from one indication to another possible for biosimilars?

Extrapolation of clinical data allows the approval of a biosimilar for a therapeutic indication for which it
has not been clinically evaluated. Both EMA and FDA permit extrapolation across indications for biosimilars because it is reasonable to assume that the biosimilar will behave similarly to its reference biological product in different indications. Nonetheless extrapolation may be less appropriate if the mechanism of action is different between indications. In view of this, EMA and FDA have outlined measures to address the concerns regarding indication extrapolation (Table 3).

<table>
<thead>
<tr>
<th>Concern</th>
<th>EMA</th>
<th>FDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanism of action may be distinct in each therapeutic indication</td>
<td>Extrapolation will be considered on a case-by-case basis. Where the MOA differs between indications or are not fully understood, separate clinical trials are likely to be necessary</td>
<td></td>
</tr>
<tr>
<td>For a given mechanism of action, several mechanisms may exist</td>
<td>Almost superimposable biological data must be provided, covering all functional aspects of the agent, even if not considered clinically relevant. Where MOA is not fully understood, separate clinical trials are likely to be necessary</td>
<td></td>
</tr>
<tr>
<td>Risk of undertreating patients or varied safety profiles in different patient groups</td>
<td>Data should be produced using a patient population and clinical endpoint most sensitive to detect clinically meaningful differences in efficacy and safety</td>
<td></td>
</tr>
<tr>
<td>Patient characteristics may influence response</td>
<td>Homogeneous population should be used</td>
<td>Careful consideration must be given to co-morbidities, concomitant medications and inter-subject variability</td>
</tr>
</tbody>
</table>

In rheumatoid arthritis, TNF-α inhibitors are thought to act predominantly through the neutralization of soluble and trans-membrane TNF-α. In other conditions such as Crohn’s disease, signaling through membrane associated TNF-α and Fcγ receptor may play a more important role in apoptosis or antibody dependent cellular cytotoxicity. This explains why Etanercept is not effective in inflammatory bowel diseases. Accordingly, the comparative data in rheumatoid arthritis may not support comparable efficacy in all indications. Subsequent indication extrapolation of biosimilars of TNF-α inhibitors from inflammatory arthritis to inflammatory bowel diseases was not granted in Canada.

Even when the mechanism of action is the same across different indications, the FDA recommended that data should be produced using a patient population and clinical endpoint most sensitive to detect clinically meaningful differences in efficacy and safety. The immunogenicity profile of biosimilars should also be characterized before extrapolation to other indications is sought. It should be tested in the patient population that carries the highest risk of an immune response and immune mediated adverse events.

Can we use the biosimilars and the reference product interchangeably?

Interchangeability must be supported by data showing that the biosimilar is likely to produce the same clinical results as its reference biological product. An interchangeable biosimilar must be able to substitute its reference biological product in any patient without introducing new risks or reducing efficacy. In addition, a biosimilar that fulfils the interchangeability standards may be substituted for its reference biological product by the pharmacy without authorization of the healthcare provider.

The EMA does not have the authority to designate a biosimilar as interchangeable with its reference biological product, but the new US Biologics Price Competition and Innovation Act allows the FDA to formally designate a biosimilar interchangeable. Nevertheless biosimilars are currently not deemed interchangeable with their reference biological products. A good lesson was learned from cases of red cell aplasia in renal dialysis patients who were prescribed subcutaneous epoetin-α in 1990s. After an intensive investigation, the most likely cause was a formulation change that led to antibody formation against all circulating erythropoietin. Removal of human serum albumin from the epoetin-α formulation and its replacement with polysorbate 80 and glycine as stabilizers was suggested as the primary cause. This also illustrates the importance of post marketing pharmacovigilance of biosimilars. Using biosimilars and the reference biological products interchangeably may complicate an effective pharmaco-vigilance program, as it may subvert the ability to attribute immunogenicity or other safety related problems to the appropriate agent. A patient may then be obliged to stop both the biosimilar and reference biological product if there are complications.

Conclusion

As many of the patents of biologics are approaching their expiry date, biosimilars will be available in the market very soon. Although they offer a great potential for cost saving, it is important to understand the difference between a biosimilar and its reference biological product. To attain biosimilar status, it must be proven comparable with its reference biological product in terms of the protein structure, pharmacological properties, clinical efficacy and safety. EMA, WHO and FDA have already formulated guidelines for regulatory approval to ensure the quality of biosimilars.

Despite these stringent approval requirements, a biosimilar cannot be identical to its reference biological product. We must understand all the aspects that contribute to the differences between biosimilars and reference biological products, and use biosimilars vigilantly.

The American College of Rheumatology updated the position statement on biosimilars in February 2015. Regarding the possibility of substitution, the committee suggested that the decision should only be made by the physician and compulsory switching to a biosimilar by a dispenser should not be allowed for economical reasons without advance consent from the physician. The committee suggested that biosimilars must have distinct names that allow them to be distinguished from each other and their reference biological products.

Based on the available data and regulatory guidelines,
many countries have developed their own position statements on the use of biosimilars, focusing on the choice of biosimilar versus reference biological product, interchangeability and post marketing pharmacovigilance (Table 4). Until local guidelines on the use of biosimilars are available, physicians can consider these to be a general guide before prescribing biosimilars to patients with rheumatic diseases.

Table 4. Position statement on the use of biosimilars in different countries

<table>
<thead>
<tr>
<th>Countries</th>
<th>Drug selection</th>
<th>Interchangeability</th>
<th>Pharmacovigilance</th>
</tr>
</thead>
<tbody>
<tr>
<td>United Kingdom22</td>
<td>A choice for patients initiating a new biologic therapy. Not support a universal mandate that all patients should start a biosimilar purely to save costs.</td>
<td>Substitution only with the consent of the prescribing clinician. Registration with the BSR biologic registers.</td>
<td>Should undergo robust technology appraisals. Use the brand names in all appraisal an guidance documentation.</td>
</tr>
<tr>
<td>Italy23</td>
<td>Use of biosimilars in children needs to be carefully investigated.</td>
<td>Automatic substitution not allowed. Clinician’s responsibility to decide on switching use different names.</td>
<td>Surveillance for safety and immunogenicity. Use different names.</td>
</tr>
<tr>
<td>Portugal24</td>
<td>Therapies choice must primarily be dictated by patient safety concerns. The less expensive drug is a reasonable first therapeutic choice in naïve patients. the choice of an innovative drug or biosimilar is the responsibility of the prescribing physician.</td>
<td>Automatic substitution not acceptable. Switching must be performed upon consent of the physician. Prescription must be performed by brand name.</td>
<td>Immunogenicity must be adequately assessed. Robust pharmacovigilance must be assured.</td>
</tr>
<tr>
<td>Spain25</td>
<td>Substitution not permitted. Implement appropriate measured agreed by the Technical committee of the Spanish pharmacovigilance system.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References

2. Food and Drug Administration. Scientific Considerations in Demonstrating Biosimilarity to a Reference Product. 2015.
TIME SAVING
LIFE CHANGING

Enantone 1, 3 & 6 months DPS
for prostate cancer*:
Introducing a unique delivery system

*Enantone 1 month DPS 3.75mg is indicated for Prostate cancer. Enantone 3 month DPS 11.25mg is indicated for Prostate cancer with metastasis. Enantone 6 month DPS is indicated for palliative treatment of advanced hormone-dependent prostate carcinoma.

Abbreviated prescribing information: Indication: Enantone 1-Month DPS 3.75 mg Prostate cancer, endometriosis at genital & extragenital localization (from stage I-IV), premenopausal breast cancer, decrease of myoma volume &/or amelioration of symptoms in uterine myoma, central precocious puberty. Enantone 3-Month DPS 11.25 mg Prostate cancer with metastasis, endometriosis at genital & extragenital localization (from stage I-IV), Treatment of uterine fibroid, concomitantly with Fe therapy for pre-operative haematologic improvement of patients with anaemia caused by uterine leiomyomata. Precocious puberty. Enantone 6-Month DPS 30 mg Palliative treatment of advanced hormone-dependent prostate carcinoma. Dosage: Enantone 1-month DPS 3.75 mg subcutaneous injection. Endometriosis for adults, 3.75 mg once every 4 weeks for 6 months. The patient’s weight < 50 kg, 1.98 mg may be used for 6 months. Initiate administration on 1st-5th day after the start of the menstrual period. Central precocious puberty 30-180 mg/kg once every 4 weeks. Uterine myomata 1.88 mg once every 4 weeks. Heavy weight patients or those with markedly enlarged uterus 3.75 mg once every 4 weeks. Initiate administration on the 1st-5th day after the start of the menstrual period. Prostate cancer & premenopausal breast cancer 3.75mg once every 4 weeks. Enantone 3-Month DPS 11.25 mg subcutaneous/intramuscular injection. Metastatic prostate cancer 11.25mg every 3 months. Endometriosis 11.25mg every 3 months for 6 months. Uterine fibroid 11.25mg every 3 months for 6 months. Precocious puberty Children <20 kg 5.43mg (half content of pre-filled syringe) once every 3 months. Children ≥20 kg 11.25mg (whole content of pre-filled syringe) once every 3 months. Enantone 6-Month DPS 30 mg subcutaneous once every 6 months with interval of 168 days to max. 182 days. Contraindications: Hypersensitivity to leuprorelin or other GnRH analogues, polycystic acid, Undiagnosed abnormal genital bleeding, Pregnancy, lactation. Adverse Reactions: Anaphylactic symptoms, Pituitary apoplexy may develop after initial administration in patients with pituitary adenoma. Depression, Women: Hot flashes, menstrual disorders, vaginal dryness, Mood decrease, Men: Transient aggravation of bone pain, urethral obstruction or spinal cord compression, Hot flashes, impotence, decrease in testis size, nausea, vomiting, edema of lower limbs, general pain, gynaecomastia, Loss of appetite, headache, joint or back pain, muscle weakness, nocturia, dysuria, injection site reactions, increased sweating, tiredness peripheral edema, paraesthesia, sleep disturbances, weight gain.

Reference:
1. Enantone 1 month DPS 3.75mg package insert, ENTDPS1M0814PIHK1. 2. Enantone 3 month DPS 11.25mg package insert, ENTDPS3M0314PIHK1. 3. Enantone 6 month DPS 30mg package insert, ENT6MDPS0613PIHK.

Takeda Pharmaceuticals (Hong Kong) Limited
23 & 24/F, East Exchange Tower
38 Leighton Road, Causeway Bay, Hong Kong
Tel: (852) 2133 9800 Fax: (852) 2856 2728

For further information, please consult full prescribing information.

HK/KK/ENA/08/10-2015
In Memory of Dr HUNG Kwan Ngai (1964~2015)

Back in the early 1990’s, all of us working in neurosurgery were a bit surprised and happy that there eventually was a newcomer to our specialty at Queen Mary Hospital where there was so much work and yet so few committed. He was described as hardworking with incredible energy and despite his relative juniority could handle emergency reliably and with masterly finesse! Soon after that I was introduced to HUNG Kwan Ngai – a person whom I could only conclude that all these descriptions were indeed understatements.

Kwan Ngai, whom I preferred to address as 洪爺 every time we met was a fighter, an excellent neurosurgeon, an avid reader of wide interests, a reliable colleague, a righteous person and my unforgettable friend.

Although we never worked together in the same department, exchanges and interactions within the local neurosurgical community gave me a clear knowledge of his professionalism. Knowing well the demands and difficulties a neurosurgeon faces, I looked up to him - with his own unabating malady and yet fulfilling all his daily duties with excellence - with nothing but awe and admiration. He, a caring doctor unceasingly aiming at managing his patients better, was aptly an expert in functional neurosurgery that calls for impeccable technical precision and perfectionistic attitude. He was well liked by patients whom he cared for and junior doctors whom he taught.

Yet it was at overseas conferences and studies abroad that I could really fathomed Kwan Ngai as a person. We attended the European Congress at Berlin together in 1995 and two years later during my visit to Professor Wolfgang Koos, an iconic grandfather surgeon at the time, he was there with him as visiting fellow and Kwan Ngai was kind enough to acquaint me with not just the various academic activities but the city of Vienna as well. Chances to talk about things without our trade helped me realize that we did share common hobbies - appreciation of Chinese calligraphy, classical music and collection of limited edition fountain pens, just to name a few. Unlike me, he read a lot and even remembered. To me, he was a walking encyclopedia of history, east and west; common knowledge, broad and deep. Since then we had ample things to talk about apart from the handling of neural tissues!

Thanks to his generous response to my invitation when I served as the President of the Federation of Medical Societies, his expertise was put to good use between 2004 and 2007 at the helm of the Education Committee. Under his leadership, we held numerous very successful educational courses and Annual Scientific Meetings. His effective and decisive management style impressed us all at the Federation and undoubtedly set a very high standard for the rest to follow.

Serving at the Hospital Authority all his career, he clearly understood the challenges colleagues face. Effectiveness of clinical service is limited not simply in terms of human resources but more so in the efficiency of its delivery. In 2011, Kwan Ngai continued his journey to strive for excellence in a broader perspective. He ‘unscrubbed’ as a surgeon for 2 years and worked at the Hospital Authority Quality and Safety Division and returned to Queen Mary to serve as the Coordinator of Operating Theatre Services. He confided in me that his aim was to work out a better workflow in the operating theatre and eventually might help us all. It would not be easy but he would surely try!

Regrettably, this noble course is now his legacy. 洪爺 left all too suddenly on 30th December 2015, without any pain or suffering. Hong Kong has lost a good doctor, the neurosurgery community an academic, the Federation an outstanding colleague and for me a dear friend! Despite that being relatively short, his life was full; full of love, devotion, gratitude, humour and kindness – characteristics of an outstanding person that will certainly leave indelible impressions on all those who knew him. He is survived by a lovely family – Rosanna, the love of his life and their wonderful son Anthony. May peace be with them always.

Dr Dawson FONG
<table>
<thead>
<tr>
<th>Sunday</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Urothelial Carcinoma in Disguise</td>
<td>HKMA Council Meeting</td>
<td>FMSHK Officers’ Meeting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FMSHK Executive Committee Meeting</td>
<td>FMSHK Council Meeting</td>
<td>MindScape Seminar</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date / Time</td>
<td>Function</td>
<td>Enquiry / Remarks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **1 MON** | Urothelial Carcinoma in Disguise | Ms. Tammy HUNG
Tel: 9609 6064
1 CME Point |
| **2 TUE** | HKMA Council Meeting | Ms. Christine WONG
Tel: 2527 8285 |
| **13 SAT** | CME Lecture - Refresher Course for Health Care Providers 2015/2016 | Ms. Clara TSANG
Tel: 2354 2440
2 CME Point |
| **16 TUE** | HKMA Kowloon West Community Network - Common Medical Emergencies in GP Setting | Ms. Hana YEUNG
Tel: 2527 8285
1 CME Point
Dr. LEE Ka Lai
Tel: 9229 4616
1 CME Point |
| **17 WED** | Hong Kong Neurosurgical Society Monthly Academic Meeting – Nature of Craniospharyngioma: Implications on Management, Recurrence and Functional Outcome | Dr. LEE Wing Yan, Michael
Tel: 2595 6456
1.5 CME Point |
| **18 THU** | HKMA Hong Kong East Community Network - Updates on Management of Rheumatic Diseases | Ms. Candice TONG
Tel: 2527 8285
1 CME Point |
| **18 THU** | HKMA Kowloon East Community Network - The Changing Scenario of Chronic Ischemic Heart Disease: Focus on Diabetic Coronary Patients | Ms. Hana YEUNG
Tel: 2527 8285
1 CME Point
Dr. LEE Ka Lai
Tel: 9229 4616
1 CME Point |
| **25 THU** | FMSHK Executive Committee Meeting | Ms. Nancy CHAN
Tel: 2527 8988 |
| **27 SAT** | Mindscape Seminar | Ms. Oriental TOURANIK
Email: angie@bodytalksystem.com.hk
Website: http://www.bodytalksystem.com.hk/
mindscape/cms/en/bodyTalk_courses/
mindscape-Seminar |

Upcoming Meeting

Health Care Forum: War on Cancer
Organiser: The Economist Events; Speakers: Kenneth Hartigan-Go, Under-Secretary of Health, Office for Health Regulation, Department of Health, Republic of the Philippines; Chio Shu-Ti, Director-general, Health Promotion Administration, Ministry of Health and Welfare, Taiwan; Venue: The Ritz-Carlton, Millenia Singapore
Ms. Gloria WONG
Tel: 2585 3839
Fax: 2802 7007
Annual Dinner 2015- Federation on Broadway

On 31 December 2015, the traditional Annual Dinner of the Federation of Medical Societies of Hong Kong was held at the Sir Run Run Shaw Hall of the Hong Kong Academy of Medicine, to celebrate New Year’s Eve with our members, friends and families. The dinner was a resounding success that exemplified the Federation spirit, attended by over 300 guests from our member societies and partners from the medical & healthcare communities.

A glamorous venue and a programme of wonderful music epitomized the theme, Federation on Broadway. We were delighted to witness exquisite performances by Ms Becky Lee (李璧琦), Ms Corinna Chamberlain (陳明恩) and Ms Silian Wong (王靖喬), and last but not least, our special guest, Mr Peter Lai (黎彼得), who led us in the Federation song. The Broadway Costume Prize, King and Queen of Karaoke and Dance Fever Competition provided a wealth of entertainment and fun.

We were privileged to be joined by many distinguished guests: the Under Secretary for Food and Health, Prof Sophia CHAN; Chairman of the Hospital Authority, Dr John LEONG; President of the Academy of Medicine, Dr Donald LI; Honorary Secretary of the Academy of Medicine, Dr LAU Chor-chiu; The Hon Dr Ka-lau LEUNG; The Hon Prof Kwok-lun LEE and Prof Diana LEE; The Hon Dr LEONG Che-hung and Dr Lillian LEONG; Prof Gabriel LEUNG; Dr CHEUNG Tse Ming and Dr Cissy YU. The presence of these honorable guests helped light up the event and we express our heartfelt thanks to them.

This year, fabulous prizes worth up to $100,000 were awarded, including the Luxury Prize for Uniworld Enchanting Danube Package and the Premier Prize of a 15 Day Panama Canal Cruise. Guests were fabulously entertained by bingo games, instant fun photo taking, wine booth, harp performance, and the climax of the night – countdown to the New Year 2016.

Much excitement and joy shared by all those present made for a memorable night. We would like to express our sincere gratitude to all our sponsors, and thank all our guests for joining us on this special occasion.

Federation Visit to Beijing

The Federation was cordially invited to attend the 25th National Assembly & Centennial Anniversary of the Chinese Medical Association (CMA) on 14-16 December 2015. Dr Mario CHAK, President of the Federation of Medical Societies of Hong Kong (FMSHK), together with the Immediate Past President Dr Raymond LO attended the assembly at the Great Hall of the People in Beijing. We would like to express our sincere gratitude to the CMA for their invitation and kind hospitality.
Answers to Radiology Quiz

Answer:

1. A curvilinear calcific rim is seen at the left paraspinal region, highly suggestive of a calcified wall of an abdominal arterial aneurysm. (Figure 2) No radio-opacity is seen to suggest presence of a urinary tract stone. Bilateral psoas shadows appear normal. Degenerative changes are also seen in the lumbar spine.

2. Urgent referral for symptomatic AAA is warranted.

3. Further imaging with computed tomography (CT) is required for assessment of AAA complications. CT is the gold standard imaging due to the speed of the examination and widespread availability of CT.

Patient progress:
The patient was urgently referred for symptomatic AAA. Urgent contrast CT revealed a fusiform infrarenal AAA with maximal transverse diameter of 8.7x7.3cm. Circumferential thrombus was observed with vague peripheral crescent of hyperdensity, suspicious of bleeding within the mural thrombus. Periaortic stranding was also evident. No contrast extravasation was observed (Figures 3 to 6). Overall features were suspicious of impending AAA rupture. The patient underwent emergency EVAR with an excellent result and resolution of symptoms. (Figure 7).

Discussion:
Abdominal aortic aneurysm (AAA) is a focal dilatation of the abdominal aorta that is 50% greater than the proximal normal segment or >3 cm in maximum diameter.

There is increased prevalence with increasing age, and a male predominance (M:F = 4:1).

In Hong Kong, the annual incidence of AAA is 13.7 per 100,000 population and 105 per 100,000 in those aged 65 and above. About 10% of AAAs present when they rupture.

Common causes include atherosclerosis, inflammatory abdominal aortic aneurysm, chronic aortic dissection, connective tissue disorders (e.g. Marfan syndrome, Loeys-Dietz syndrome and Ehlers Danlos syndrome), mycotic aneurysms and vasculitis (e.g. Takayasu arteritis).

AAAs are usually asymptomatic until complicated by leakage or rupture. Uncommon presentations of an unruptured aneurysm include abdominal or back pain or presence of a pulsatile abdominal mass.

Treatment is suggested when an aneurysm exceeds 5.0cm in women and 5.5 - 6.0cm in men due to a
significant increase in risk of rupture. Treatment is also considered if an aneurysm expands by >10mm per year even if it remains <5.0cm because of the significant risk of rupture.

Treatment options include endovascular aneurysm repair (EVAR) or open surgical repair.

References
HEALTH CARE FORUM
WAR ON CANCER
MARCH 17TH 2016 • SINGAPORE

KENNETH HARTIGAN-GO
Under-secretary of health
Office for health regulation
Department of health
Republic of the Philippines

CHOU SHU-TI
Director-general
Health promotion administration
Ministry of health and welfare
Taiwan

NELLY ENWEREM-BROMSON
Director, division programme
of action for cancer therapy
and department of technical
co-operation
International Atomic
Energy Agency

OPHIRA GINSBURG
Medical officer
management of noncommunicable diseases
World Health Organisation

RICHARD SULLIVAN
Professor, cancer policy
and global health
Kings College London
and director
Kings Institute of Cancer Policy

MASUM HOSSAIN
Regional president
Asia Pacific
Pfizer Oncology

Register today and save
USD380
Subscribers of The Federation of Medical Societies of Hong Kong can enjoy a 20% discount on the standard price
(Code: 3531FMHK at check-out)

Apply to attend:
asiaevents@economist.com
+852 2585 3312

How can countries in Asia manage the rising costs of cancer care?

Join leaders from government, industry and academia to learn about practical and cost-effective measures being used to attack cancer in Asia, and discuss how they can be improved and implemented for the benefit of patients.

Join the conversation
@EconomistEvents #EconWaronCancer

waroncancer_asia.economist.com
Phytosterols
Proven efficacy in reducing LDL cholesterol

- Every 2 cups of milk contain 1.5 g phytosterols and 259 mg omega-3 fatty acids
- Clinical Proven to reduce up to 10% LDL cholesterol within 3 weeks
- Additive effects with statin and omega-3 fatty acids

*References: