Helping hands around the world

Turning heads with a wealth of publications

BOTOX®: one of the world's most widely researched medicines

BOTOX®: a wealth of experience
- Treating serious and/or debilitating conditions for 20 years worldwide
- Over 4000 clinical publications
- More licensed indications than any other botulinum toxin:
 - Strabismus and blepharospasm
 - Hemifacial spasm
 - Cervical dystonia
 - Dynamic equinus foot deformity due to spasticity in juvenile cerebral palsy
 - Wrist and hand disability due to upper limb spasticity associated with stroke
 - Severe axillary hyperhidrosis
 - Upper facial rhytides

References:
1. Allergan, data on file.
3. Search strategies are identical across all products. Search is conducted on 530 International® in the following databases: Medline®, Embase®, Embase®, Medline®, and Embase®. Data are reported separately from either peer reviewed articles, letters, reports, or from congress abstracts, meeting posters. Results include clinical studies, case reports, reviews, and exclude trade magazines, news, book chapters.
Contents

Editorial

- Editorial
 Dr. Philip LEE

Dental Bulletin

- Current Concepts in Mandibular Reconstruction
 Dr. Winnie WS CHOI
 Dr. John LO

- MCHK CME Programme Self-assessment Questions

- Do You Think They Know about Us?
 Oral and Maxillofacial Surgery in Hong Kong
 Dr. Alfred SL LAU

- Mandible Repositioning in the Management of Obstructive Sleep Apnoea
 Dr. Philip LEE

- The Use of Recombinant Human Bone Morphogenetic Protein-2 in Vertical Ridge Augmentation for Dental Implants – A Case Report
 Dr. James CHOW

- Reconstruction of Maxillary Defects
 Dr. Sai-kwong CHAN

Life Style

- Besides Maxillofacial Surgery
 Dr. Kiang-cheong CHOW

Dermatological Quiz

- Dermatological Quiz
 Dr. Ka-ho LAU

Medical Diary of November

Calendar of Events

Disclaimer

All materials published in the Hong Kong Medical Diary represent the opinions of the authors responsible for the articles and do not reflect the official views or policy of the Federation of Medical Societies of Hong Kong, member societies or the publisher.

Publication of an advertisement in the Hong Kong Medical Diary does not constitute endorsement or approval of the product or service promoted or of any claims made by the advertisers with respect to such products or services.

The Federation of Medical Societies of Hong Kong and the Hong Kong Medical Diary assume no responsibility for any injury and/or damage to persons or property arising from any use of execution of any methods, treatments, therapy, operations, instructions, ideas contained in the printed articles. Because of rapid advances in medicine, independent verification of diagnoses, treatment method and drug dosage should be made.

The Cover Shot

A snap shot in the sky at a flight back from Europe. I was attracted by the pattern of cloud and the outstanding part that was red-colored by the setting sun. With a bit of imagination, that reminded me of Dore’s illustration to Dante’s ‘Divine Comedy’.

H3D-31 HC-80mm, Program (f/3.2, 1/80 sec)

Dr. Edward HUI
MBBS(HK), BDS(HK), MDS(HK), FDSRCS(Eng), FRCD(C), FCDHK(OMS), FHKAM(DS)
Specialist in Oral & Maxillofacial Surgery
In the aesthetic point of view, our chin projection, symmetry and balance of our jaw line are important landmarks affecting our outlooks. The mandible or the lower jaw can be considered the cornerstone of our facial profile.

Functionally, underdevelopment of this piece of bone whether congenital or developmental not only can affect our speech and masticatory function, it also constitutes an important aetiological factor for obstructive sleep apnoea which is now found related to different systemic disorders.

Reconstruction of jaw defects as a result of resection of benign or malignant lesions of the jaw is still a challenge to surgeons who want to restore the patients’ aesthetic appearance and functions.

In this issue, there are different articles related to this important piece of bone of our body, the mandible. I will discuss the treatment of a moderate case of obstructive sleep apnoea by repositioning of the jaws, (MaxilloMandibular Advancement). Dr. Winnie Choi will give us an update and latest advances in mandibular reconstruction. Dr. SK Chan will report on a case of maxillary reconstruction. Dr. James Chow will report a case of alveolar bone reconstruction with genetic recombinant bone morphogenic protein, to facilitate rehabilitation of a patient after traumatic injury.

In this issue, there are different articles related to this important piece of bone of our body, the mandible. I will discuss the treatment of a moderate case of obstructive sleep apnoea by repositioning of the jaws, (MaxilloMandibular Advancement). Dr. Winnie Choi will give us an update and latest advances in mandibular reconstruction. Dr. SK Chan will report on a case of maxillary reconstruction. Dr. James Chow will report a case of alveolar bone reconstruction with genetic recombinant bone morphogenic protein, to facilitate rehabilitation of a patient after traumatic injury.

Dr. Alfred Lau will report his interesting findings on public awareness of the specialty of Oral and Maxillofacial Surgery and it seems that our specialty needs to work harder for more public awareness.

I hope our readers will enjoy reading these academic articles and also share the joy of Marathon running with Dr. Ben Chow.
Current Concepts in Mandibular Reconstruction

Dr. Winnie WS CHOI
BDS (HK), MDS (OMS) (HK), MOS RCSEd, AdvDipOMS (HK), FCSDHK (OMS), FHKAM (Dental Surgery)

Dr. John LO
BDS (HK), MDS (OMS) (HK), MOS RCSEd, FCSDHK (OMS), FHKAM (Dental Surgery)

1Clinical Assistant Professor in Oral & Maxillofacial Surgery
Faculty of Dentistry, the University of Hong Kong

This article has been selected by the Editorial Board of the Hong Kong Medical Diary for participants in the CME programme of the Medical Council of Hong Kong (MCHK) to complete the following self-assessment questions in order to be awarded 1 CME credit under the programme upon returning the completed answer sheet to the Federation Secretariat on or before 30 November 2011.

Introduction

Mandibular reconstruction has been a challenge for surgeons over the past 50 years. The concepts and techniques have evolved significantly in order to achieve the best aesthetic and functional result individualised for the patients so that the quality of life is improved. The reconstruction may involve bone with or without soft tissue reconstruction. The objectives are (1) to restore mandibular continuity, (2) to achieve a symmetrical facial contour and (3) to allow prosthetic rehabilitation for mastication. There are two well established classifications of mandibular defects. The one described by Daniel R. classified mandibular defects into (1) isolated bone (2) Compound (bone and oral lining or skin) (3) Composite (bone, oral lining and skin) and (4) extensive composite (bone, oral lining, skin and soft tissues). Jewer et al classified mandibular defects according to the location: hemimandibular defect (H), central defect (C) and lateral defect (L). Different reconstructive options are available for different types of mandibular defects secondary to trauma, post ablative surgery for benign and malignant tumours, osteoradionecrosis, bisphosphonates related osteonecrosis of the jaws and congenital deformity.

Alloplastic Material

Reconstruction with alloplastic materials is often an option for selected patients who suffer from advanced malignant disease unfit for extended operation as a temporary treatment to provide contour and mechanical stability. It may be used in combination of a pedicled myocutaneous flap as coverage, such as pectoralis major, trapezius and latissimus dorsi flaps. Maurer and colleagues reported in a long term follow up that the success rate of mandibular reconstruction using reconstruction plate only to bridge the segmental defect was 58%. The failures were related to extraoral and / or intraoral exposure, loosened osteosynthesis screws and fractures of reconstruction plates. Postoperative radiotherapy and smoking habit were found to be related to the reduced success rate.

Non Vascularised Bone Graft

In the past decades, nonvascularised autogenous bone grafting was commonly used in mandibular reconstruction. The common donor sites include anterior and posterior iliac crests, cranium, rib and tibia. The bone graft can be harvested as a bone block or as corticocancellous chips contained in a mesh or tray to be fixed to the mandible by titanium screws. However, some of these reconstructions especially large block grafts are suboptimal due to the inherit limitation on revascularisation and bone regeneration which are best at the resection margin and taper towards the centre of the graft. This may lead to resorption with residual defect and compromises future implant rehabilitation. The bone healing is further compromised by perioperative radiation therapy and early graft exposure with saliva contamination. It has been suggested that this technique should be used in defect lengths less than 6cm and truly lateral defects using an extraoral approach only.

Vascularised Free Flap

In the recent 30 years, vascularised free flap has become more popular in mandibular reconstruction and is often regarded as the most reliable, efficient and cost-effective technique for oromandibular reconstruction. The most commonly used osteocutaneous free flaps are: fibular flap, deep circumflex iliac artery flap and scapular flap.

Fibular Flap

The fibular flap is probably the most popular free flap used in mandibular reconstruction because it has adequate pedicle calibre and length for anastomosis and bone length (~ 25cm) for total mandible reconstruction. The fibula bone can be segmentalised, typically into 3 pieces, to resemble the contour of the mandible from angle to angle. The high flap survival rate, availability of skin paddle and minimal donor site morbidity also favour its use by reconstructive surgeons. However, there are two limitations: (1) The short bone height may influence the lower lip position and it also poses challenge in future implant rehabilitation especially if the remaining mandible is dentate. A double barrel technique has been advocated to solve this problem. Other options such as using shorter implants to support long prosthesis, or performing distraction osteogenesis of the fibula bone to lengthen the height to reach the level of the remaining alveolus. (2) Although the fibula can be harvested as an osteocutaneous flap, the
amount of soft tissues that can be transferred is limited and may contribute to donor site morbidity such as wound dehiscence and poor appearance of skin graft. Other common donor site morbidities include weakness of extension and flexion of the great toe21.

The Deep Circumflex Iliac Artery (DCIA) Flap

The DCIA flap is particularly useful in reconstruction of hemimandibular defects. The angle of the mandible can be created by the anterior superior iliac spine of the ipsilateral iliac bone. The iliac bone provides adequate bone height comparable to the alveolar height of a dentate mandible making future implant rehabilitation more favourable. If soft tissue reconstruction is needed, the internal oblique muscle can be harvested based on the ascending branch of DCIA. The disadvantages of DCIA flap are relatively short pedicle length compared to fibular flap and bulky skin paddle. Donor site morbidities are also more common such as postoperative pain, gait disturbance, injury to the lateral femoral cutaneous nerve and hernia formation when the internal oblique muscle is harvested21.

The Scapular Flap

The scapular flap allows great flexibility in three-dimensional reconstruction due to independent vascular pedicles of the skin paddle, muscle and bone flap based on the branches of the subscapular artery. Although the bone length, quality and shape may be inferior to the fibular and DCIA flaps, the scapular flap has the potential for mass tissue transfers. With proper selection of the donor tissue, the flap thickness can be easily controlled. The skin is predominantly hairless and has a better colour match to the face compared to fibular and DCIA flaps. The drawback of the scapular flap, apart from the limited bone volume, is the inconvenience during the harvest which requires prone or lateral decubitus position and thus does not allow two team operation.

Computer Assisted Surgery

Mandibular reconstruction remains to be a great challenge to reconstructive surgeons. Owing to the anatomical difference, precise reconstruction usually demands segmentalisation of the free vascularised bone graft. Accurate 3-dimensional placement of the graft is always essential to restore the pre-disease contour, and functions in terms of speech and chewing. Traditionally this procedure is time-consuming even for experienced surgeons. With the increased popularity in computer tomography and the improved computer technology, clinicians are allowed to (i) visualise the disease using multi-planar reformat CT images, and (ii) perform pre-surgical planning on three-dimensional model (3D model) using CT data. The simulation can be performed either in the laboratory or with a computer.

1. Laboratory-based treatment planning

Stereolithographic model has been a useful tool in mandibular reconstructive surgeries to achieve good facial contour and occlusal relationship after surgery22. It is first fabricated from CT data using rapid prototyping machine. The surgical planning, from the bone resection, bone graft harvest and segmentalisation, till the final graft placement, can all be simulated on this model. The final reconstructed model serves a good platform for (i) pre-bending the fixation plate, and (ii) the fabrication of the surgical templates.

2. Virtual computer planning

Nowadays, there are some user-friendly computer softwares which allow surgical planning in a virtual environment. Compared to the laboratory based planning, the planning is usually simpler as the position of the reconstructed bone can be easily adjusted based on mirroring of the non-diseased side of the mandible. The surgical plan will usually be exported for fabrication of (i) surgical templates and (ii) stereolithographic model for pre-bending of the fixation plates. This further saves laboratory time and manpower.

Figure 1. Discrepancy between the laboratory model (green colour) and the computer model (in red, blue, pink and yellow colours) planning using mirroring in a patient for secondary reconstruction using the fibula graft. Laboratory planning was made on a stereomodel by an experienced technician while the computer planning was made based mainly on mirroring the unaffected side of the mandible. After the plan was accepted by the surgeon, the stereomodel would be sent for CT scan. The CT data would be used to fuse with the computer planning data.

Surgical Navigation

Apart from using surgical templates, execution of the surgical plan can be assisted by surgical navigation,
which is similar to a global positioning system (GPS). With the attachments of sensors on the patient’s skull, the spatial position of the patient and the calibrated surgical instruments can be tracked by the navigation system. Following mapping of the virtual patient (surgical plan based on CT data) to the actual patient, surgical navigation allows the surgeon to check and control the position of the reconstructed bone with reference to the surgical plan, which was shown on the screen as “the map in GPS” (Figure 2).

Future Development

Tissue Engineering
Although vascularised free flap transfer has become the standard of care in mandibular reconstruction, the major disadvantage of this approach is the donor site morbidity. The use of alloplastic materials is also associated with complications such as exposure and infection. The field of tissue engineering may become one of the solutions in mandibular reconstruction. There are techniques developed to culture cell substrates and transfer them, with or without scaffolds, to regenerate part of the mandible. The use of recombinant bone morphogenetic protein (rhBM-2) and stem cells are being explored in bone regeneration. These techniques are currently undergoing further investigation and evaluation.

Medical Imaging
With the good success rate in vascularised flap reconstructions, our next milestone will be on good soft tissue planning. Current worldwide computer-aided mandibular reconstruction techniques are mainly based on CT hard tissue imaging only. Despite an improved speed in scanning, radiation exposure is considered as a potential hazard. MRI can be considered as a non-invasive alternative for both bone and soft tissue imaging nowadays. The feasibility of using MRI in 3D bone reconstruction had been reported since 2003 using special algorithm. Compared with CT scan and ultrasound, MRI can offer a better resolution in head and neck soft tissue imaging. Combination with angiogram could aid us in identification of vascularised flap donor site and recipient sites’ vascular network. In situation of secondary reconstruction in patients with previous radiation therapy, this could allow a better pre-surgical estimation.

Computer Planning
While there are numerous commercial software available for surgical planning, the majority of them are considered as closed systems in which the planning file format is locked and can only be opened by their own software providers’ rapid prototyping machine. As a result, a surgical template can only be fabricated by those commercial companies. It is not uncommon for those surgical templates’ manufacturers located far away from local city; hence a period of time (ranged from 1-3 weeks) is required for the splint to be ready in the surgeon’s hands. With the recent increase in popularity in computer design and manufacturing technology, it is generally recommended that those software also allow export of the surgical plan as an open file format which can be used by general rapid prototyping software for local preparation of surgical template with better customisation. In complex situations when combination of surgical template and navigation could offer a better accuracy, direct linkage of virtual planning with the navigation system via an open export file format could further lessen the workload during the pre-surgical planning.

Virtual Bone Library
While current virtual computer planning is generally based on mirroring of the non-disease side as reference, reconstruction planning in situations with significant tissue loss involving both sides of the face is always challenging due to lack of references. Thanks to the relative long history of CT imaging, there should have a huge number of CT scans available comprising a wide range of hard tissue skull models of different gender and age. The concept of “virtual bone library” had appeared in a few centres in which virtual jaw bone data from one patient database will be exported for aiding the planning in another patient with no good skeletal reference for matching. It is generally believed that our virtual bone library could be collected and organised following simple skeletal anthropology analysis. This virtual database can serve as a good source for local surgeons during planning in patients suffering from advanced tissue loss due to tumour or trauma.

References
5. Pogrel, M.A., et al., A comparison of vascularized and nonvascularized bone grafts for segmental mandible reconstruction had been reported since 2003 using special algorithm. Compared with CT scan and ultrasound, MRI can offer a better resolution in head and neck soft tissue imaging. Combination with angiogram could aid us in identification of vascularised flap donor site and recipient sites’ vascular network. In situation of secondary reconstruction in patients with previous radiation therapy, this could allow a better pre-surgical estimation.
Please read the article entitled “Current Concepts in Mandibular Reconstruction” by Dr. Winnie WS CHOI and Dr. John LO and complete the following self-assessment questions. Participants in the MCHK CME Programme will be awarded CME credit under the Programme for returning completed answer sheets via fax (2865 0345) or by mail to the Federation Secretariat on or before 30 November 2011. Answers to questions will be provided in the next issue of The Hong Kong Medical Diary.

Questions 1-10: Please answer T (true) or F (false)

1. The success rate of mandibular reconstruction using alloplastic materials is over 70%.
2. Non vascularised graft is the best option for hemimandibular reconstruction in young fit patients.
3. Vascularised free flaps are considered to be the most reliable, efficient and cost-effective technique for oromandibular reconstruction.
4. Fibular flaps can be used for total mandibular reconstruction.
5. The advantage of using the fibular flap over the DCIA flap in mandibular reconstruction is the adequate bone height for future implant rehabilitation especially in dentate patients.
6. The scapular flap has the potential for three dimensional reconstruction because it has independent vascular pedicles of the skin paddle, muscle and bone flap.
7. Clinicians can visualise the disease using multi-planar reformat CT images, and perform pre-surgical planning on three-dimensional model (3D model) using CT data.
8. Preoperative surgical planning using stereolithographic model allows prebending of fixation plates and fabrication of surgical templates in the laboratory which can save some surgical time.
9. During the surgical planning using computer software, the graft position is determined by the surgeon based on experience.
10. Surgical navigation in mandibular reconstruction allows real time adjustment of the graft position with reference to the computer plan and patient’s CT image.

Current Concepts in Mandibular Reconstruction

Dr. Winnie WS CHOI
BDS (HK), MDS (OMS) (HK), MOS RCSEd, AdvDipOMS (HK), FCSHK (OMS), FHKAM (Dental Surgery)

Dr. John LO
BDS (HK), MDS (OMS) (HK), MOS RCSEd, FCSDHK (OMS), FHKAM (Dental Surgery)

Everything Dental™

HENRY SCHEIN®
Authorized distributor for

MODERN Dental Laboratory

www.moderndentallab.com
- 852 2305 2084

Hong Kong · Shenzhen · Chicago · Seattle · Los Angeles · Boston

…..creating beautiful smiles around the world
Do You Think They Know about Us?
Oral and Maxillofacial Surgery in Hong Kong

Dr. Alfred SL LAU

Introduction

People nowadays are more conscious about healthcare related issues as reflected by the blooming of a lot of commercials on televisions, signboards and magazines. More and more doctors were being interviewed through these media, as there is a great demand for the public to know more about their health. Dentistry is a little bit slow in this area, due to their relative conservativeness over publicity and advertisements. Despite the tremendous increase in public awareness regarding personal health, the specialty of oral and maxillofacial surgery (OMFS) is still unknown to many. OMFS receives referrals from both dental and medical specialties as well as emergency department. It acts as a bridge to a lot of different fields across the dental and medical borders. However, it has been reported that there was a low awareness of this field to both the general public and professionals in other countries.1-4

Hong Kong Chinese are thought to be unexceptional. The reasons may be due to the traditional thinking that oral health is not as important, and people will not seek help until symptoms affect their daily life to an unbearable extent.

This is the first survey to analyse the public awareness regarding the specialty of OMFS in Hong Kong. It aims to point out the situation and arouse the responsible bodies’ action accordingly. Their objectives should be aimed at promoting the specialty to the public, to help fully unitising the services available, and to encourage more people to take the opportunity to be trained, in turn more people can become part of our team.

Methodology

Questionnaires were sent out through personal network by helpers recruited. These questionnaires were distributed to Hong Kong citizens aged 18 years or above. The subjects, who should not be any dental or medical related personnel, were interview individually by helpers.

The questionnaires were made up of three parts, including 12 simple questions. Personal demographic data were recorded in the first part. Second part included general questions about OMFS including the scope of services and training particulars. The final part was designed to test the knowledge of the interviewees, whether they could correlate some specific diseases or conditions that could be treated by oral and maxillofacial (OMF) surgeons.

Results

There were 150 questionnaires distributed to 20 helpers in June 2011, where 104 were completed through personal interviews to non-dentally and non-medically related Hong Kong citizens. There were 59 (57%) females and 45 males (43%). The mean age was 32 year-old, ranging from 18 to 65 year-old.

Among the 104 interviewees, there were 78 who (75%) claimed they had never heard of the specialty of OMFS, while the other 26 (25%) reported that they had heard of it. Within the 26 people who heard of OMFS, 14 (54%) said that they did not actually know what OMFS was about, while the other 12 (46%) claimed that they had knowledge about OMFS to a certain extent (fig. 1). They were asked on how they had known about OMFS. There were five ways reported, including from friends/family members (65%), newspaper/magazine (15%), television (12%), radio (4%) and medical/healthcare related magazine (4%) respectively.

Five questions were asked regarding the training and services of OMFS available in Hong Kong. There were different thoughts regarding the stream of field that OMFS belonged to (fig. 2). A majority (44%) knew that OMFS belonged to the field of dentistry while 39% thought that it belonged to medicine. There were 33 interviewees (32%) who had a correct idea of the fact that there were around 50 OMFS specialists in Hong Kong. The rest had overestimated the amount of OMFS specialists in which 34 (33%) thought that there were around 150, 21 (20%) said that there were around 250 and 16(15%) thought that there were around 350 (fig. 3). Regarding the training pathway, only 8 (7.8%) had correctly pointed out that there was a minimum of six years training after the primary degree. Most of
the people had underestimated the training period, in which 83.6% thought it required less than six years of training. Only 3.8% thought that it required more than six years, where the rest of the people (4.8%) claimed that they did not know. The University of Hong Kong is the only tertiary institute which provides the training of OMFS specialists. There were 69% of interviewees who were correct about this, where 16% thought that other universities provide it and 18% said they did not know. Regarding service provision in the field of OMFS by the government sector, 38 (37%) knew that was available, while 21 (20%) did not. A majority (43%) was uncertain about this.

There were about one third (32%) of answers wrongly named the scope of services within OMFS. These included general dentistry (18.9%), dental scaling (8.7%) and orthodontics (4.4%). Among the correct answers, most of the people knew that OMFS specialists did facial cosmetic surgeries (18.4%) and jaw correction surgeries (15.5%), followed by intra-oral surgeries (15%). The results are summarised in figure 4. Multiple choices are given to interviewees on where they would refer themselves to if they were diagnosed to have a certain disease or condition. Choices included OMF surgeons; ear, throat and nose (ENT) surgeons; general surgeons; head and neck surgeons and plastic surgeons. The answers are summarised in table 1.

There were about one third (32%) of answers wrongly named the scope of services within OMFS. These included general dentistry (18.9%), dental scaling (8.7%) and orthodontics (4.4%). Among the correct answers, most of the people knew that OMFS specialists did facial cosmetic surgeries (18.4%) and jaw correction surgeries (15.5%), followed by intra-oral surgeries (15%). The results are summarised in figure 4. Multiple choices are given to interviewees on where they would refer themselves to if they were diagnosed to have a certain disease or condition. Choices included OMF surgeons; ear, throat and nose (ENT) surgeons; general surgeons; head and neck surgeons and plastic surgeons. The answers are summarised in table 1.

<table>
<thead>
<tr>
<th>Disclosures</th>
</tr>
</thead>
</table>

OMFS was introduced to a majority of people (65%) by a friend or a family member. This indicates that most of the knowledge was by personal experiences of people around. There was almost no public image about this specialty. The government or tertiary institute could publicise this field by media like TV, radios or newspapers through interviews or in terms of case study. The local association should also take a
leading role to arouse the public’s awareness regarding our specialty, either by organising public talks or distributing leaflets / booklets / magazines regularly.

There are 83% of interviewees who had answered correctly that OMFS belongs to the field dentistry or both dentistry and medicine. It is not surprising as the name OMFS itself indicated that is something about the oral cavity, thus dentistry. There are 51 registered OMFS specialists currently in Hong Kong. When compared to other medical specialties, we have relatively few colleagues. Only 32% of the interviewees had the correct impression about the amount of specialists available in Hong Kong while the rest had overestimated the amount with 15% said that there were around 350. The small amount of registered specialists may explain in part the relative low public awareness.

Regarding the scope of services in OMFS, around one third of people misunderstood what we did (fig. 4). Although the others could name some of the treatments that we provided, a lot were unknown to them. Most of the people had stated we provided facial cosmetic surgeries (18.4%), jaw correction surgeries (15.5%) and intra-oral surgeries (15%). This may not truly reflect the knowledge about the scope in OMFS. Oral and maxillofacial surgery itself is self-explanatory. May be the interviewees were just guessing the answer.

Table 1 summarised some conditions / diseases which could be treated by different specialties. In fact OMFS surgeons could treat all of the listed conditions. Although there are overlapping responsibilities over some specialties, there are never absolute right or wrong on who should do what. It all depends on the training they have received and the culture in different places. The results indicate only on how the general public thought when they came across these diseases. A majority (59.6%) thought that OMFS surgeons should treat oral ulceration over other specialties. Moreover, it was reported similarly that, most of the people thought an OMFS surgeon should treat oral malignancy (62.5%) and tongue tumour (48.1%). In my personal experience, most of these cases would go to either ENT surgeons or head and neck surgeons. In real life, it depends a lot on who was referring the cases. A dental practitioner would mostly refer these cases to OMFS surgeons, while a medical practitioner would do it differently. This may be the explanation on the reported high percentage of seeking OMFS surgeons over these cases while in the real life it is not the truth. The reason lies on the amount of medical practitioners are far more than dental practitioners in Hong Kong.

TMJ disorder is rather a vague area for both practitioners and patients. The reason of this is the fact that these joints involve a lot of different structures and usually the symptom is indistinct in terms of location and soreness. Most of the patients came in with a history of seeking different doctors already without treating the problems, however most of the patients (46.2%) would prefer an OMFS surgeon. Jaw fractures are a unique condition for OMFS surgeons, as it involves most of the time teeth and occlusion. However head and neck surgeons ranked first (33.7%) in patients’ minds, followed by OMFS surgeons (29.8%) and plastic surgeons (27.9%). Jaw tumour is a similar entity, as it involves surgery and reconstruction of the jaw. As such, the pattern was reported similarly that head and neck surgeons ranked first (42.3%), followed by OMFS surgeon (26%).

Dental implant is absolutely a scope of OMFS surgeons within the list. Very interestingly, around 10% of people felt that plastic surgeons would do that. Probably, most of the time, it involves a cosmetic concern, especially at the anterior esthetic zone of the dentition. Cleft lip and palate repair surgeries involve mostly plastic surgeons as well as OMFS surgeons. The results showed that 54.8% thought the plastic surgeons should be responsible for this while 28.8% thought of OMFS surgeons. Dento-facial deformity involves the facial cosmetic as well as functional problem of patients. Treatment includes orthodontics before the jaw could be moved surgically to a better position. To achieve an ideal occlusion is one of the most important objectives in the treatment of these situations. Although not as obvious as dental implant, orthognathic surgery is again one of the most unique surgeries that OMFS surgeons do. Results showed that over 80% of people would seek plastic surgeons for this kind of treatment, while only around 10% would seek OMFS surgeons. Although some plastic surgeons would do this kind of surgery, still this is a main area in OMFS. This again reflects the poor awareness of OMFS among the general public. Lastly, facial swellings may indicate a lot of different problems, as it can originate from anywhere around the face, jaws, teeth, ears, sinus, eyes, etc. Around 10% of people did not know who to seek help from, and this was the condition that confused patients the most. These results indicated a lot of people were actually unaware of what OMFS specialists could help them if they got a relevant disease. Even it was within the scope of OMFS, they would prefer other specialties more.

The training pathway of OMFS specialists include a minimum of six years supervised training in recognised training centres. It comprises of three years of basic training after the dental degree, followed by another three years of advanced training. There is an intermediate examination in between and an exit examination on finishing all the training. The College of Dental Surgeons of Hong Kong is the responsible body of specialist training in Hong Kong, and it is under the umbrella of the Hong Kong Academy of Medicine. The specialist training pathway is in a sense similar to other medical specialties. The results indicate most of the general public (83.6%) has underestimated the training requirement in terms of time. This reflects either they have a general lack of knowledge on how specialists are being trained in Hong Kong or they have underestimated on the scope of services we can provide, as reflected in the latter part of the results. The University of Hong Kong is the only tertiary institute which provides such training, as there is only one dental school in Hong Kong. 69% were correct about this. There are also recognised training centres from the government sector, but it is of a minority. The government sector does provide public service in OMFS. Either it could be a referral from private practitioners or the public can go to queue up in a government outpatient unit before they are being referred. Only 37% reported they had knowledge about this.

Table 1 summarised some conditions / diseases which could be treated by different specialties. In fact OMFS surgeons could treat all of the listed conditions. Although there are overlapping responsibilities over some specialties, there are never absolute right or wrong on who should do what. It all depends on the training they have received and the culture in different places. The results indicate only on how the general public thought when they came across these diseases. A majority (59.6%) thought that OMFS surgeons should treat oral ulceration over other specialties. Moreover, it was reported similarly that, most of the people thought an OMFS surgeon should treat oral malignancy (62.5%) and tongue tumour (48.1%). In my personal experience, most of these cases would go to either ENT surgeons or head and neck surgeons. In real life, it depends a lot on who was referring the cases. A dental practitioner would mostly refer these cases to OMFS surgeons, while a medical practitioner would do it differently. This may be the explanation on the reported high percentage of seeking OMFS surgeons over these cases while in the real life it is not the truth. The reason lies on the amount of medical practitioners are far more than dental practitioners in Hong Kong.

TMJ disorder is rather a vague area for both practitioners and patients. The reason of this is the fact that these joints involve a lot of different structures and usually the symptom is indistinct in terms of location and soreness. Most of the patients came in with a history of seeking different doctors already without treating the problems, however most of the patients (46.2%) would prefer an OMFS surgeon. Jaw fractures are a unique condition for OMFS surgeons, as it involves most of the time teeth and occlusion. However head and neck surgeons ranked first (33.7%) in patients’ minds, followed by OMFS surgeons (29.8%) and plastic surgeons (27.9%). Jaw tumour is a similar entity, as it involves surgery and reconstruction of the jaw. As such, the pattern was reported similarly that head and neck surgeons ranked first (42.3%), followed by OMFS surgeon (26%).

Dental implant is absolutely a scope of OMFS surgeons within the list. Very interestingly, around 10% of people felt that plastic surgeons would do that. Probably, most of the time, it involves a cosmetic concern, especially at the anterior esthetic zone of the dentition. Cleft lip and palate repair surgeries involve mostly plastic surgeons as well as OMFS surgeons. The results showed that 54.8% thought the plastic surgeons should be responsible for this while 28.8% thought of OMFS surgeons. Dento-facial deformity involves the facial cosmetic as well as functional problem of patients. Treatment includes orthodontics before the jaw could be moved surgically to a better position. To achieve an ideal occlusion is one of the most important objectives in the treatment of these situations. Although not as obvious as dental implant, orthognathic surgery is again one of the most unique surgeries that OMFS surgeons do. Results showed that over 80% of people would seek plastic surgeons for this kind of treatment, while only around 10% would seek OMFS surgeons. Although some plastic surgeons would do this kind of surgery, still this is a main area in OMFS. This again reflects the poor awareness of OMFS among the general public. Lastly, facial swellings may indicate a lot of different problems, as it can originate from anywhere around the face, jaws, teeth, ears, sinus, eyes, etc. Around 10% of people did not know who to seek help from, and this was the condition that confused patients the most. These results indicated a lot of people were actually unaware of what OMFS specialists could help them if they got a relevant disease. Even it was within the scope of OMFS, they would prefer other specialties more.

The training pathway of OMFS specialists include a minimum of six years supervised training in recognised training centres. It comprises of three years of basic training after the dental degree, followed by another three years of advanced training. There is an intermediate examination in between and an exit examination on finishing all the training. The College of Dental Surgeons of Hong Kong is the responsible body of specialist training in Hong Kong, and it is under the umbrella of the Hong Kong Academy of Medicine. The specialist training pathway is in a sense similar to other medical specialties. The results indicate most of the general public (83.6%) has underestimated the training requirement in terms of time. This reflects either they have a general lack of knowledge on how specialists are being trained in Hong Kong or they have underestimated on the scope of services we can provide, as reflected in the latter part of the results. The University of Hong Kong is the only tertiary institute which provides such training, as there is only one dental school in Hong Kong. 69% were correct about this. There are also recognised training centres from the government sector, but it is of a minority. The government sector does provide public service in OMFS. Either it could be a referral from private practitioners or the public can go to queue up in a government outpatient unit before they are being referred. Only 37% reported they had knowledge about this.
This shows the lack of knowledge from the general public, regarding the training opportunity and the provision of service by government sector. Lack of awareness will in turn reduce the amount of people who can enjoy the service, or reduce the chance of being trained. The government and the university should think over again in how to fully unitise the resources being input, or else it will be a waste of effort. This lack of awareness affects the dynamic of the whole system, not only to the patients or to the public, but also to the doctors who provide the treatment, the trainers who train residents and all the personnel who are being involved.

In summary, there is a very low awareness in OMFS to the general public in terms of its scope of services, the provision of service and training by the government and institutes. It is very discouraging to learn that most people do not really know us as they may miss the chance to be treated or to be trained. There is no doubt that the specialty deserves a better public awareness. The stress should be put on three areas, namely the public image of who we are, awareness of the treatment we could provide, the awareness of the details of training pathways and opportunities. The objectives are to let more people know who they should seek help from and provide open opportunities for people to be trained.

References
Obstructive sleep apnoea (OSA) is the most common type of sleep apnoea and is caused by obstruction of the upper airway during sleep. It is believed that over 20% of the population may be suffering from the disorder. Obstructive sleep apnoea is characterised by repetitive episodes of cessation of breathing during sleep despite there is an effort for breathing. There are associated episodes of decrease in blood oxygen saturation.

OSA is now recognised to be associated with different medical conditions, which include:

1. coronary artery disease
2. hypertension
3. stoke
4. cardiac arrhythmia
5. glaucoma

The symptoms of OSA include loud snoring, excessive daytime sleepiness, headache in the morning, loss of concentration and focus during work.

The dimension of our airway decreases with age due to sagging of soft tissue around the airway and the chance of developing OSA increases with age. Risk factors in OSA include overweighted males with increased body mass in torso and neck typically middle age or older; a receded lower jaw; and alcohol consumption and medications like sedatives and muscle relaxants.

The patient presented with symptoms is investigated with a sleep study or polysomnography in which a comprehensive recording of the biophysiological changes that occur during sleep. These parameters include EEG, EOG, EMG, ECG, and oxygen saturation. The diagnosis of OSA is established with the use of AHI (apnoea and hypopnoea index) and RDI (Respiratory Disturbance Index).

The obstruction of the upper airway can happen at different levels. Commonly seen is a deviated nasal septum, a hypertrophic turbinate, a long and floppy uvula; and obstruction at the base of tongue and the glossopharyngeal level.

Treatment of OSA

There are non-surgical means and surgical means in the management of OSA patients. Treatment should be customised and combination of surgery and non-surgical means might be necessary for individual patients.

CPAP or Continuous Positive Airway Pressure therapy is the most common treatment prescribed for patients with moderate to severe OSA. The patient wears a mask and the machine continuously ventilates the patient with positive air pressure to open up the airway. The therapy is effective but depends very much on patient compliance and tolerance of the machine during sleep.

Dental appliance is another commonly used non-surgical means to treat OSA patients with obstruction at the base of the tongue level. The appliance repositions the mandibular teeth in a protruded position and pulls the hyoid attachment forward to prevent collapse of the tongue during sleep. It seems to be effective and less sleep disturbing to patients with mild to moderate OSA compared with CPAP machines. It is contraindicated in patients with periodontal disease, loose teeth and temporomandibular joint disorder.

Role of Maxillofacial Surgery in the Management of OSA

Forward repositioning of the mandible is an effective way of opening up the collapsed airway at the base of the tongue.
There are two main orthognathic procedures that are used to achieve this goal, namely genioplasty advancement and Maxillo-Mandibular Advancement (MMA).13,16

Genioplasty Advancement10

The aim of the surgery is to pull the base of the tongue and the hyoid attachment forward by forward positioning of the osteotomised chin segment.

Location of the genio-tubercle is checked with Cone Beam CT. Simulated osteotomy is performed on stereo-model (Fig. 2). Mini-plate can be pre-bended with model surgery.

![Fig. 2 Genioplasty performed on 3D model](image)

Surgical Technique

A circum-vestibular incision is made intraorally from the lower premolar to premolar. The mentalis muscle is transected and the periosteum incised. The chin is degloved. An osteotomy cut is made horizontally inferior to both the mentle foramens and away from the roots of the lower anterior teeth. The genial tubercle, attachment of the genioglossus muscle must be included in the mobilised segment (Fig. 3). The chin segment is fixed in the planned position with the pre-bended titanium plate. Facial profile improved after the chin advancement.

![Fig. 3 Advancement of chin segment and genio-attachment](image)

Maxillo-Mandibular Advancement (MMA)11-14

MMA is often regarded as the final solution for moderate to severe OSA patients who had gone through conservative means eg. weight control, dental appliance and CPAP. Forward positioning of the tongue base attachment is an effective means of opening the airway. Empirically rule of ten applied to the amount of repositioning of the jaw bone: advancement of the mandible for 10mm with concomitant advancement of the maxilla and genio-advancement for 10mm.

Case Report

A 36 years old Chinese male patient (Fig.4) was referred to the Oral and Maxillofacial Surgery Clinic for surgical management of his OSA. The patient was diagnosed to have a moderate OSA for three years with symptoms of loud snoring, witnessed apnoea, daytime sleepiness, poor concentration and memory. RDI was 19 from a sleep study. He had been treated with CPAP and dental appliance but has become intolerable to the noise of the CPAP machine and the discomfort from the facemask.

On presentation, he is slightly overweight with a retrognathic mandible and a short neck. The overbite was deep and the dental health was reasonable. (Fig. 5)

The airway was assessed with CT scan and airway assessment computer software (3DMd Vultus).15,16 The obstruction was confirmed to be located at the base of the tongue level. (Fig. 6 & Fig. 7)
Surgical Plan

In order to open up the airway, the aim of the surgery is to advance the mandible and genio-attachment. Theoretically the maxilla needs no surgery. However, a pure mandibular advancement will create a non-functional malocclusion. Usually the problem is solved by orthodontic therapy presurgically to hormonise the dental arches and preserve overjet for the mandibular surgery. In this case, the patient declined orthodontic treatment; a Maxillo-Mandibular Advancement is offered to the patient, the maxilla and mandible are advanced together to preserve the existing dental occlusion.

To minimise the change in mid face profile, the maxilla is planned for an anti-clockwise rotation with an impaction of 6mm and advanced with the mandible. The mandible is advanced 10mm and the chin segment is advanced 10mm.

Maxillary Le Fort I osteotomy, Bilateral Sagittal Split mandibular osteotomy and genioplasty were performed simultaneously to achieve the surgical movements via an intra-oral approach. The new jaw positions were fixed with mini-titanium plates. (Fig. 8)

Surgical Results

The facial profile changes and dental occlusion were as planned. No neurosensory disturbance noted from the osteotomy. (Fig. 9)
The airway was reassessed with postoperative CT scan and 3DMd Vultus again and compared (Fig. 11 & Fig. 12). Considerable increase in airway dimension was noted from the measurement. Subjectively the patient reported good quality sleep without daytime sleepiness and loss of concentration to work. Unfortunately, the patient refused postoperative polysomnography study for documentation of postoperative AHI and RDI.

Conclusion

It is shown in this case that MMA is an effective way to eliminate obstructive sleep apnoea at glossopharyngeal level obstruction.

Genioplasty and Maxillo-Mandibular Advancement procedures offer an option for patients with moderate to severe OSA to completely eliminate the CPAP machine. However, consideration should be taken for facial profile changes and possibility of adjuvant orthodontic treatment.

References

2. Lam JC, Sharma SK, Lam B, Obstructive sleep apnoea, definitions, epidemiology and natural history, Indian J Med Res. 2010 Feb 13;131:165-70
NewTom - Market Leader of CBCT

Smallest Possible Focal Spot
for the Clearest Images

360 Degree Imaging and Rotating
Anode Means No Scatter of Artifacts

Greater Patient Comfort
and Treatment Acceptance

Easier Image Sharing

Precise 1:1 Scale Imaging

SafeBeam Technology for Patient Safety

Consistent Images Regardless
of Patient Size

Sino–Ita International Trading CO., LTD

Add. : Room1702,Tower C,Weiboshidai Center
 No.17,South Street,Zhongguancun,Beijing China

Tel. : 86+(10)8857-9042/43 Fax: 86+(10)8857-9044
DCH (Diploma in Child Health Examination) Written Examination (MRCPCH Part IA) 2012

The Hong Kong College of Paediatricians (HKCPaed) and the Royal College of Paediatrics and Child Health (RCPCH) will hold a Joint Diploma in Child Health Examination in Hong Kong in 2012 awarding DCH (HK) and DCH (International) to successful candidates.

The Examination is divided into two parts, Written (MRCPCH Pt IA) and Clinical. The DCH Written Examination is a common paper shared with the MRCPCH Part IA. The MRCPCH Part 1A Examination is held three times a year in Hong Kong. The next MRCPCH Part 1A Examination will be held on Tuesday, 14 February 2012. The examination fee is HK$4,250 for Part 1A. Candidates who wish to enter the examination must hold a recognized medical qualification in Hong Kong.

Application: Candidates who wish to sit the examination in Hong Kong MUST apply through the Hong Kong College of Paediatricians (HKCPaed). For application details, please visit the HKCPaed website at www.paediatrician.org.hk/entcnews.htm or call the College Secretariat at 28718871.

Deadline for Application: Friday, 20 November 2011

<table>
<thead>
<tr>
<th>Important Notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Clinical Examination for DCH from April 2011</td>
</tr>
</tbody>
</table>

A new format of the DCH clinical examination has been adopted since April 2011. Details of the new format and other relevant information can be viewed on the RCPCH website at: www.rcpch.ac.uk
The Use of Recombinant Human Bone Morphogenetic Protein-2 in Vertical Ridge Augmentation for Dental Implants – A Case Report

Dr. James CHOW
Specialist in Oral Maxillofacial Surgery

Introduction

Ridge resorption is the consequence of tooth loss. When the residual bone volume is so diminished that direct replacement of the missing tooth with a dental implant is unsuitable, it may be necessary to augment the deficient ridge prior to dental implant placement.

Depending on the size and the morphology of the defect, different techniques such as guided bone regeneration and onlay bone grafting are employed to reconstruct the deficient ridge.

In a systematic review, Donos et al. found that there was adequate evidence in the literature to support that staged guided bone regeneration was effective in horizontal ridge augmentation and the clinical outcomes of dental implants in the augmented ridge were predictable with a high survival rate of 99% to 100% with up to 5 years follow-up after loading. However, the same authors reported less favourable outcomes of onlay bone grafting in horizontal ridge augmentation with implant survival rates varied from 84.1% to 100%.

Rocchietta et al. conducted a systematic review on vertical ridge augmentation. Despite that there were clinical and histological data supporting the potential use of vertical ridge augmentation for dental implants, there was limited evidence in the literature to conclude that guided bone regeneration, distraction osteogenesis, and onlay bone grafting were predictable in vertical ridge augmentation.

Aghaloo and Moy published a consensus report to investigate on the effectiveness of various ridge augmentation techniques for dental implants and concluded that guided bone regeneration was predictable for alveolar ridge augmentation. However, there was insufficient documentation on the other augmentation techniques such as onlay bone grafting, split-crest, and distraction osteogenesis. The authors stated that these techniques were more operator-sensitive and more technique-sensitive procedures and they were associated with more complications such as wound dehiscence, infection, graft resorption, and graft failure.

In order to improve the clinical outcomes of horizontal and vertical ridge augmentation and avoid complications, new techniques have been introduced. These new techniques include the use of growth factors such as the bone morphogenetic proteins to increase the bone volume of the deficient ridges.

Feasibility studies of rhBMP-2/ACS applications in oral and maxillofacial surgeries have been conducted on sinus lift grafting and socket preservation. These studies have confirmed that rhBMP-2/ACS has unparalleled osteoinductive potential and rhBMP-2/ACS is effective in forming bone de novo in sinus lift grafting and socket grafting situations.

To demonstrate the effectiveness of rhBMP-2 in vertical ridge augmentation, a case with deficient anterior maxillary ridge reconstructed with rhBMP-2 and dental implants is reported here.

Case report

A 25 years old lady presenting with missing upper central incisors due to traumatic injury when she fell from her bicycle.

Clinical examination revealed that there were vertical and horizontal defects of the residual alveolar ridge possibly due to the loss of labial bone plate during the avulsion injury (Figure 1).

Cone Beam CT (NewTom, Italy) examination was performed to study the morphology of the deficient ridge. The DICOM file of the CBCT was segmented and converted to the STL format. Subsequently the maxilla model of this patient was produced by rapid prototyping (Objet, Israel).

Treatment options of various augmentation techniques were discussed in detail with the patient and her mother. The benefits and disadvantages of using rhBMP-2/ACS (Infuse®, Medtronic) were explained. Eventually the patient decided to undergo ridge augmentation with rhBMP-2/ACS.
The deficient ridge on the maxilla model was built up using self-curing acrylic resin (Figure 2). A Titanium-mesh tray was fabricated to follow the contour of the reconstructed ridge (Figure 3). A teeth-supported acrylic surgical stent was made in the laboratory. This surgical stent was necessary for correct positioning of the Ti-mesh tray during surgery in order to obtain the desired height of the vertical ridge augmentation.

The patient underwent the vertical ridge augmentation under monitored anaesthetic care. Local anaesthesia (2% Xylesteine™ 1.7 mL, ESPE) was given by infiltration technique. A 3-side full thickness muco-periosteal flap was raised from canine to canine. Periosteal releasing incision was made to mobilize the flap sufficiently. Ti-mesh tray was positioned using the surgical stent.

An XXS package of rhBMP-2/ACS (0.7 cc) was opened and prepared according to the written instructions. The rhBMP-2 was reconstituted with sterile water and loaded in a syringe. The reconstituted rhBMP-2 solution was delivered to the Absorbable Collagen Sponge (ACS) carrier (Figure 4). It was necessary to wait for a minimum 15 minutes to allow the complete adsorption of rhBMP-2 by the ACS carrier. The ACS carrier retained the rhBMP-2 and controlled the release of the rhBMP-2.

The ACS carrier was cut into smaller pieces and applied to the residual ridge by layers. Finally the Ti-mesh tray was seated with the surgical stent and stabilized with titanium screws of 1.5mm diameter and 8 mm length (Figure 5). The Ti-mesh tray provided stable support to the underneath rhBMP-2/ACS preventing it from collapse during the healing period. A tension-free primary closure was carried out with 4/0 and 5/0 vicryl sutures.

Patient recovered from the surgery unremarkably except that she developed gross facial swelling postoperatively. The swelling gradually subsided and disappeared after 2 weeks.

Cone Beam CT examinations taken immediately after surgery and six months later were compared. From the CT images, there was new bone formation in the space previously occupied by rhBMP-2/ACS (Figure 6a and 6b).
Patient underwent dental implant placement under local anesthesia. A 3-side flap was raised following the previous surgical incisions. The Ti-mesh tray was exposed and removed. There was good bone volume in the reconstructed site. Two dental implants (NobelActive™ 3.3mm x 13mm, Nobel Biocare AG) were inserted with good primary stability (50 Ncm). After the healing abutments were connected, the mucosa was closed with 5/0 vicryl sutures. Postoperative CT showed that these two implants were well supported by the regenerated bone (Figure 7).

Three months later these implants were restored with ceramic abutments and ceramic crowns produced by CADCAM process (Procera® Nobel Biocare AG).

Discussion

In 1965, Marshall R Urist induced ectopic bone formation in rabbits by implanting demineralized bone matrix into intramuscular pouch of them. This phenomenon of autoinduction of bone formation leaded to subsequent discovery of the bone morphogenetic proteins (BMPs). Bone morphogenetic proteins (BMPs) are members of the family of transforming growth factors. Two recombinant proteins are available: recombinant human bone morphogenetic protein rhBMP-2 and rhBMP-7. These recombinant products have been investigated as alternatives to autogenous bone grafts in a variety of clinical situations, including spinal fusions, fracture repair, and reconstruction of acquired and congenital maxillofacial conditions.

Currently, rhBMP-2 is FDA-approved for sinus lift grafting and socket preservation. Boyne et al. conducted randomized controlled clinical study of rhBMP-2 in sinus lift grafting to establish the efficacy and safety of the rhBMP-2/ACS combination. The authors concluded that a concentration of 1.50mg/mL rhBMP-2/ACS induced faster bone formation compared to a concentration of 0.75mg/mL rhBMP-2/ACS. In a randomized prospective study, Triplett et al. compared the clinical outcomes of 1.50mg/mL rhBMP-2/ACS with autogenous bone graft in 160 patients undergoing sinus lift grafting. They reported that the clinical and histological results in terms of bone formation and implant survival rates were comparable.

Jovanovic et al. conducted an animal study to compare the effectiveness of bone reconstruction using either rhBMP-2 or guided bone regeneration (GBR). The authors concluded that rhBMP-2/ACS with or without GBR induced significantly more bone formation than GBR alone. In addition, the authors found that the combined use of rhBMP-2/ACS and GBR may impair the osteoinduction potential of rhBMP-2.

Despite that there were animal studies demonstrating promising results of using rhBMP-2 in bone reconstruction, the efficacy of rhBMP-2 in alveolar ridge augmentation was equivocal. Fiorellini et al. reported favorable results of rhBMP-2/ACS in socket preservation in 80 patients. The authors showed that in sockets with/without intact buccal wall, 1.5mg/mL rhBMP-2/ACS induced bone formation of sufficient quantity and good quality for implant placement. Cochran et al. evaluated the efficacy of rhBMP-2/ACS in 12 patients requiring either socket preservation or localized ridge augmentation. The authors reported satisfactory bone formation with socket preservation but they failed to obtain increased bone volume in cases with ridge augmentation.

There are definite advantages of using rhBMP-2/ACS for ridge augmentation compared with conventional bone grafting and guide bone regeneration. The advantages include autoinduction for bone formation, less technique-sensitive procedure, elimination of donor site morbidities and transmission of human diseases. However, rhBMP-2/ACS is expensive and evidence of its effectiveness in alveolar ridge augmentation is still limited.

References
What do we offer?

..... is what you deserve.

Biocompatible

Esthetics

Strength

Technology
Reconstruction of Maxillary Defects

Dr. Sai-kwing CHAN

BDS(HK), FRACDS, FCDSHK(Oral & Maxillofacial Surgery), FHKAM(Dental Surgery)
Consultant Oral & Maxillofacial Surgeon, Queen Elizabeth Hospital

Introduction

The maxilla is formed by strong bony buttresses and thin paper-thin cortical bones. As the keystone of the midface, it supports the orbits, the zygomatic complex, the nasal unit and the dento-alveolar complex of the upper jaw - holding the entire midface into one functional and aesthetic complex.

Causes of Maxillary Defects

In a broad sense, the physiological alveolar bone resorption after loss of teeth, for one reason or another, is the most common maxillary defect that requires reconstruction – simple removable dentures or complicated osseointegrated dental implants, with or without bone grafting procedures.

Congenital defects affecting the maxilla include cleft lip and palate, hemifacial microsomia, facial cleft and various dento-facial deformities.

Trauma to the maxilla can be caused by road traffic accidents, gun-shots, falls, inter-personal violence etc.

Defects resulting from ablative surgeries depend on the nature, size and site of the pathological lesions concerned. The commonest malignancy is squamous cell carcinoma of the hard palate and maxillary alveolus. Benign lesions include ameloblastoma, keratocystic odontogenic tumour, benign fibro-osseous lesions.

Osteoradionecrosis presenting as a complication after radiation therapy for the head and neck cancers can lead to extensive bone loss. Bisphosphonate related osteonecrosis of the jaws is now a known complication of taking bisphosphonate medications.

Bone destructions related to infections, such as tuberculosis and syphilis, are rare. In immune deficiency diseases e.g. AIDS, bone loss might be caused by fungal or viral infections.

Consequences of Maxillary Defects

Functional consequences are problems in mastication and swallowing, loss of teeth and supporting tissue, leakage and regurgitation, phonation and even eye problems if the orbit is involved.

Structural problems may result if any part the maxillary buttresses (zygomaticomaxillary, pterygomaxillary, nsaomaxillary) system is involved.

Socio-psychological problems after maxillectomy have been assessed by evaluating the health-related quality of life. The defect itself or a large prosthesis disrupts emotional, cognitive and social functioning.

Sigmund Freud, the father of modern psychoanalysis, tragically died of cancer of the soft palate in 1939 at the age of 83. Cigar smoking had a large part to play as a causative agent. For the last sixteen years of his life, he was subjected to 30 or so surgical procedures and had to endure the daily wearing of unsatisfactory prostheses to replace his resected maxilla. Eating and speaking were severely affected. He was reported to be most upset by the inability to indulge in his ‘sin’ of cigar smoking. A brilliant life and a painful agony finally ended with 2 centigrams of morphine.

Objectives for Reconstruction of Maxilla

The mechanical replacement of the missing parts with extended dental prostheses was once the only reconstructive means available after surgical resections. A whole array of local flaps, free microvascular flaps, distraction osteogenesis and osseointegrated dental implants are nowadays standard reconstructive techniques.

The goals for the reconstruction of maxillary defects are:
1. Obliteration of the defect;
2. Restoration of functions e.g. mastication and speech;
3. Provision of adequate structural support to the midface; and
4. Aesthetic reconstruction of the external structures.

Since most maxillary defects are composite in nature, skin coverage, bony support, and mucosal lining are usually required to meet the reconstructive objectives.

Classification of Defects

Although maxillary defects involve both soft and hard tissues, the classifications are usually based on the size and location of the bony defects. A good classification system should allow for a thorough planning of the resection and the reconstructive surgery, to fulfill the practical needs in the reconstruction of prostheses and
to provide a basis for comparison of results obtained by different techniques.

A classification of maxillary defects was published by Aramany in 1978 for prosthetic rehabilitation. Since then, many other methods of classifications have been published as surgical techniques and rehabilitation advance.

Spiro et al classified three different categories of maxillectomy defects:
1. “Limited maxillectomy” was applied to any maxillectomy which primarily removed one wall of the antrum.
2. “Subtotal maxillectomy” was any procedure which removed at least two walls, including the palate.
3. “Total maxillectomy” was those procedures that resulted in a complete resection of the maxilla, which could include the exenteration of orbital contents.

Cordeiro et al described a four-part classification system that conceptualised the maxilla as a hexahedriam:
1. Type I defect (limited maxillectomy) included resection of one or two walls of the maxilla.
2. Type II defect (subtotal maxillectomy) included resection of the maxillary arch, palate, anterior and lateral walls (lower five walls), with preservation of the orbital floor.
3. Type III defects (total maxillectomy) included resection of all six walls of the maxilla. This was further subdivided into type IIIa, where the orbital contents were preserved, and type IIIb, where the orbital contents were exenterated.
4. Type IV defects (orbitomaxillectomy) included resection of the upper five walls of the maxilla, with preservation of the palate.

Brown et al developed a classification system classifying maxillectomy defects according to the vertical and horizontal components:

Vertical component:
I: maxillectomy not causing an oronasal fistula
II: not involving the orbit
III: involving the orbital adnexae with orbital retention
IV: with orbital enucleation or exenteration
V: orbitomaxillary defect
VI: nasomaxillary defect

Horizontal component:
a: palatal defect only
b: less than or equal to 1/2 unilateral
c: less than or equal to 1/2 bilateral or transverse anterior
d: greater than 1/2 maxillectomy.

With a view to facilitate further studies combining surgical reconstruction and prosthodontic rehabilitation of maxillectomy defects, Okay et al presented the palatomaxillary classification system:
- Class 1a defects involved any portion of the hard palate but not the tooth-bearing maxillary alveolus.
- Class 1b defects involved premaxilla or any portion of the maxillary alveolus and dentition posterior to the canines.
- Class II defects involved any portion of the hard palate and tooth-bearing maxillary alveolus and only one canine. The anterior margin of the defects lies within the premaxilla. This class included transverse defects that involved less than 50% of the hard palate.
- Class III defects involved any portion of the hard palate and tooth-bearing maxillary alveolus, including both canines. This class included total and transverse palatomegaly defects that involved more than 50% of the hard palate.

Development of Maxillary Reconstruction

Various reconstructive methods to augment the alveolar bone ridge for osseointegrated dental implants are widely used. Non-vascularised bone, e.g., harvested from the chin or ramus of the mandible, calvaria, anterior iliac crest, is used in procedures such as sinus lift to augment the sinus floor. Secondary bone graft for cleft lip and palate cases involving the alveolus is another commonly performed maxillary reconstruction procedure with non-vascularised cancellous bone.

A prosthetic appliance was the only reconstructive option following resection of the maxilla. An extended upper removable denture with a bulb obliterates the surgical defect, immediately restores the aesthetic, provides the patients with a set of teeth and gives support to the remaining soft tissues. It allows periodic direct inspections of the oncologic defect. However, there might be leakage between the oral and nasal cavities, discomfort, difficulty in manipulating bulky prostheses and problems with oral hygiene in an already debilitated mouth. An adequate number of remaining teeth must be required for satisfactory functions.

With the advent of osseointegrated dental implants, prosthetic replacements have been given a new meaning. A removable obturator was considered a temporary treatment before further extensive reconstruction surgery. Sophisticated rehabilitation with osseointegrated dental implants is now the final definitive step to fulfil the ultimate reconstructive functional standard – the restoration of occlusion.

A multitude of local flaps have been used for small defects. Traditionally, congenital defects of the maxilla, as in the case of cleft palates, are repaired by various local sliding palatal mucoperiosteal flaps. Alternative methods for repairing small oro-antral communications include island mucoperiosteal flaps, buccal fat pads, and nasolabial flaps.

For larger defects, pedicled myocutaneous flaps were developed in the 1960s and 1970s. The flaps are bulky and limited in their ability to reproduce the function and form of the maxillectomy defects. Historically, the deltopectoral flap, pectoralis major, latissimus dorsi, temporalis, sternomastoid, trapezius, and deltopectoral flaps have been described. Restoration of function is difficult, or
impossible at all. These are now reserved back-up flaps to the micro-vascular free flaps.

Free tissue transfer with microvascular surgery developed in the 1980s had brought about the use of less bulky fascial, fasciocutaneous and osseous flaps. Reconstrcutive options utilising free bone grafts and free tissue transfer include the radial forearm free flap (the “Chinese flap”)
rectus abdominis free flap, scapular free flap, deep circumflex iliac artery free flap, fibular free flap and anterolateral thigh flap. At present, the use of microvascular flaps is the most versatile treatment option. However, comorbidity and a permanent deficit at the donor sites remain a problem.

Functional rehabilitation has been further enhanced with the development of osseointegration of dental implants and distraction osteogenesis to create new alveolar bone and, more importantly, soft tissue coverage. Distraction osteogenesis, however, is limited by the difficulty in controlling the vector of distraction in three-dimensional maxillary defects.

Advances in Diagnostic Techniques

Magnetic resonance imaging (MRI) provides a good image of the soft tissues and allows a good knowledge of the depth of extension of the tumour processes. CT scan remains the most useful modality to study the bony skeleton. Thinner slices, two-dimensional and three-dimensional reconstructions can now be easily done. In parallel to the advances in CT scan technology, stereolithography provides very accurate models for planning.

Navigation not only facilitates the removal of deep tumours, but also provides better positioning and fixation of dental implants.

Future Development

With an attempt to reduce donor-site defects, tissue engineering for new bone formation using human tissues has been experimented clinical trials. It is now possible to create a prefabricated bone flap, using an alloplastic framework impregnated with bone morphogenetic protein (BMP) inserted into muscular tissue.

In 2005, the first facial transplantation ever was undertaken in France. The second case was done in China. Since then, a dozen or so more facial allograft transplantsations have been reported worldwide with various degrees of success. Exciting as the procedure may be, the long-term results are unknown.

Conclusion

Since level 1 or 2 evidence for the method of maxillary reconstruction does not exist, the approaches used in different centres are largely subjective, very often depending on the expertise available and inevitably influenced by personal preferences.

There is no doubt that dental prostheses have an important place in maxillary reconstruction, especially with the use of osseointegrated dental implants. Adequate bony support with good soft tissue coverage would be a prerequisite. These should be taken into account in the planning of the surgical approach – to preserve, transfer or even create the hard and soft tissues required are now possible.

Maxillary reconstruction hence requires both surgical and prosthodontic approaches for the optimal functional and aesthetic restoration.

References

Difflam-C
ANTI-INFLAMMATORY ANTISEPTIC SOLUTION SUGAR FREE

Delivers Fast Pain Relief
For painful and inflamed mouth-throat conditions

Each 10mL contains:
Benzylamine HCl 0.5mg,
Chlorhexidine Glucanate 18mg

Further information is available on request from:
Inova Pharmaceuticals (Hong Kong) Limited
Unit 01, 20/F., Millennium City 3
370 Kwun Tong Road, Kowloon, HK
Tel: (+852) 2105 0668
Fax: (+852) 2107 0668
www.inovapharma.com

Made in Australia

Desktop 3D Printer

Objet 3 Dimensional Printing Systems brings high-resolution, fine-detailed models into the hands of dental specialists and fits in any office environment.
Objet’s biocompatible materials allow it to serve the dental market well. Tests such as cytotoxicity, irritation, sanitization, USP Class VI, and more provide medical expertise with the ability to undertake advanced experiments using Object-printed models.

“Object’s 3D modeling solution helps us show presentable and professional models to patients, resulting in both good patient-doctor communication and a planning tool for surgery.”
Dr. Brian Clark, Specialist in Oral & Maxillofacial Surgery

Tel: 852 2425 8136 Email: ictinfo@ict.com.hk Website: http://www.ict.com.hk
Life was dominated by work and sports very early in my dental career. Dr. Eric Carter was enthusiastic enough to teach the first batch of dental students in Hong Kong to row in 1980. A few of them including me became really involved. We formed part of the first ever rowing team to represent Hong Kong in the Asian Games in 1982 in New Delhi. We got special permission from the Dean to leave early from our clinical session everyday for the rowing practice. It was then we started learning how to work more efficiently. These training sessions at a competition level continued throughout my undergraduate and early career as a dental officer until the Asian Games in 1986 in Seoul.

So much so for the serious rowing. I maintained my connection with rowing as an international umpire. I still managed to keep a level of physical fitness, but nothing compared as before, especially when I was doing my specialist training.

My first Trailwalker dated back to 1994. I was a member of a medical team comprising of maxillofacial surgeons and anaesthetists. We just finished a charity medical mission in Nepal and did some hiking in the countryside near the hospital overlooking the Himalayan range in the distance. The combination of charity work and nature really struck us deep in our souls. We wanted to keep the spirit going on after returning to Hong Kong and the Trailwalker seemed to be a good substitute. Covering one hundred kilometres over the MacLehose Trail was a real challenge. Our team had a mixed range of physical fitness. But that was where teamwork came in. We accommodated and supported each other very well and managed to finish in 28 hours, not a very fast record, but definitely a tremendous achievement in our own eyes. The direct consequence was that I slept for two days and my legs were sore for almost a week.

This unique experience kept driving me back onto the Trail although every time I insisted that it would be my last one. I have joined the event over 10 times since then. So every year it involved running and long hikes over the summer, gradually building up the fitness and endurance reaching the peak at the event. Different members added different chemistry and my fastest record was under 17 hours. I think it is a very respectable time and it took a lot of sweat to achieve this. It seemed a bit of waste to go through such a harsh training just for one event. So my team members started thinking to join other road running races as well for the fun of it. Marathon was again an obvious choice.

Having finished running a marathon was not as emotional as I would imagine. It was just an anti-climax. I could not resist going through the whole thing again and again in my mind. Perhaps I could shave a few minutes off if I had trained better, or ate more before the run, or did the warm-up ten minutes earlier and so on. So the natural conclusion was that I would be able to do it better the following year, always forgetting that I would also be one year older.
Modern dentistry has been continuously evolving. Oral surgical procedures are commonly performed nowadays in the dental office. Good dental nursing is a key component to success in this setting. Our course aims at introducing contemporary concept on dental nursing in oral and maxillofacial surgery.

Objectives:

- Jointly organised by The Federation of Medical Societies of Hong Kong and The Hong Kong Association of Oral and Maxillofacial Surgeons Limited

Certificate Course on Dental Nursing in Oral Surgery 2012

Date: 6 Jan - 10 Feb 2012
Time: 7:00 p.m. – 8:30 p.m.
Venue: Lecture Hall, 4/F., Duke of Windsor Social Service Building, 15 Hennessy Road, Wanchai, Hong Kong
Language Media: Cantonese (Supplemented with English)
Course Fee: HK$750 (6 sessions)
Certificate: Awarded to participants with a minimum attendance of 70%
Enquiry: The Secretariat of The Federation of Medical Societies of Hong Kong
Tel.: 2527 8898 Fax: 2865 0345 Email: info@fmshk.org

CME/CNE Course

Certificate Course for Dental Nurse

Course No. C188

Modern dentistry has been continuously evolving. Oral surgical procedures are commonly performed nowadays in the dental office. Good dental nursing is a key component to success in this setting. Our course aims at introducing contemporary concept on dental nursing in oral and maxillofacial surgery.

By this time of the year, I should have finished the first ever Osaka Marathon, giving support to the post-earthquake Japanese community. Hopefully I could also run in the Kyoto Marathon on 11 March 2012 one year after the earthquake and Tsunami. This would be a wonderful opportunity to show that we care and support them, just the way they used to give encouraging words to foreign runners. We want to witness how they recover from the devastation. So let's go for it!

Life was so basic but people there were also very religious and happy. People learn to be humble and respect the nature. Wealth and fame mean nothing while high altitude sickness can easily take your breath away. I also remembered the most enjoyable bath in a hot spring outside Lhasa after a week in the mountains without taking a bath.

Life became really busy outside maxillofacial surgery. There were the Trailwalker, local and overseas marathons, not to mention the training involved in between. Luckily self-discipline was part of our clinical training. You can always find time for training as long as you are motivated. Earlier this year I was crazy or stupid enough to do two marathons in a row with just one week in between. The price was a torn calf muscle making me limping for several weeks.

It was like an addiction. But after a while it seemed quite boring running on highways away from the crowd. Then the Tokyo Marathon brought in new perspectives and excitement. It was my first full marathon overseas. We were able to run in downtown Tokyo passing all the famous landmarks, temples, palace and department stores. The busy streets once packed with motor-vehicles were now dominated by runners. The pavements on both sides were packed with crowds of different age, all cheering and encouraging the runners passing-by just like their long-time friends or family members.

Running is like meditation to me. It brings peace of mind. I have to concentrate on the pace, the breathing and the form. It releases me from the stress of daily clinical work and refreshes my mind. But nothing is comparable to an experience of summiting a peak 6,000 m above sea level in a remote area in Tibet in 2002. Life was so basic but people there were also very religious and happy. People learn to be humble and respect the nature. Wealth and fame mean nothing while high altitude sickness can easily take your breath away. I also remembered the most enjoyable bath in a hot spring outside Lhasa after a week in the mountains without taking a bath.

Life became really busy outside maxillofacial surgery. There were the Trailwalker, local and overseas marathons, not to mention the training involved in between. Luckily self-discipline was part of our clinical training. You can always find time for training as long as you are motivated. Earlier this year I was crazy or stupid enough to do two marathons in a row with just one week in between. The price was a torn calf muscle making me limping for several weeks.
<table>
<thead>
<tr>
<th>Sunday</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
</tr>
</thead>
<tbody>
<tr>
<td>HKMA Eye Course – Latest Advances in Oculoplastic Surgery</td>
<td>HKMA Kln West Community Network - Treatment of Major Depressive Disorder</td>
<td>HKMA MPS CME – Mastering Your Risk</td>
<td>HKMA Trailwalker Final Briefing Session</td>
<td>HKMA MPS CME – Mastering Adverse Outcome</td>
<td>Joint Surgical Symposium – Minimal Invasive Access for Head and Neck Surgery</td>
<td>HKMA MPS CME – Mastering Professional Interactions and the role of Bisphosphonates</td>
</tr>
<tr>
<td>HKMA MPS CME – Mastering Difficult Interactions with Patients</td>
<td>HKMA Kln West Community Network - Certificate Course on Eye Diseases (Session 1)</td>
<td>HKMA MPS CME – Mastering Difficult Interactions with Patients</td>
<td>HKMA MPS CME – Mastering Difficult Interactions with Patients</td>
<td>HKMA MPS CME – Mastering Difficult Interactions with Patients</td>
<td>HKMA MPS CME – Mastering Professional Interactions</td>
<td>HKMA MPS CME – Mastering Professional Interactions</td>
</tr>
<tr>
<td>HKMA MPS CME – Mastering Difficult Interactions with Patients</td>
<td>HKMA Kln West Community Network - Certificate Course on Eye Diseases (Session 2)</td>
<td>HKMA MPS CME – Mastering Difficult Interactions with Patients</td>
<td>HKMA MPS CME – Mastering Difficult Interactions with Patients</td>
<td>HKMA MPS CME – Mastering Difficult Interactions with Patients</td>
<td>HKMA MPS CME – Mastering Professional Interactions</td>
<td>HKMA MPS CME – Mastering Professional Interactions</td>
</tr>
<tr>
<td>HKMA Kln West Community Network - Certificate Course on Eye Diseases (Session 1)</td>
<td>HKMA MPS CME – Mastering Difficult Interactions with Patients</td>
<td>HKMA MPS CME – Mastering Difficult Interactions with Patients</td>
<td>HKMA MPS CME – Mastering Difficult Interactions with Patients</td>
<td>HKMA MPS CME – Mastering Difficult Interactions with Patients</td>
<td>HKMA MPS CME – Mastering Professional Interactions</td>
<td>HKMA MPS CME – Mastering Professional Interactions</td>
</tr>
</tbody>
</table>

Medical Diary of November

|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
Date / Time	Function	Enquiry / Remarks
1 TUE
1:15 pm | HKMA Eye Course – Latest Advances in Oculoplastic Surgery | HKMA CME Department 1 CME Point
Organiser: The Hong Kong Medical Association, Chairman: Dr. Victor Chi-pang WOO, Speaker: Dr. Carol Shan YÜ, Venue: The Hong Kong Medical Association Central Premises, Dr. Li Shui Pui Professional Education Centre, 2/F., Chinese Club Building, 21-22 Connaught Road Central, Hong Kong

8:00 pm – 10:00 pm | FMSHK Officers’ Meeting | Ms. Sonia CHEUNG Tel: 2527 8898 Fax: 2865 0345
Organiser: The Federation of Medical Societies of Hong Kong, Venue: Gallow, 2/F., Hong Kong Jockey Club Club House, Shan Kwong Road, Happy Valley, Hong Kong

8:00 pm | Council Meeting | Ms. Christine WONG Tel: 2527 8285
Organiser: The Hong Kong Medical Association, Chairman: Dr. Kin CHOI, Venue: HKMA Head Office, 5/F., Duke of Windsor Social Service Building, 15 Hennessy Road, Hong Kong

2 WED
2:30 pm / 6:30 pm | HKMA MPS CME – Mastering Your Risk | HKMA CME Department 2.5 CME Points
Organiser: The Hong Kong Medical Association, Speakers: Dr. Andy CHEUNG & Dr. Danny LEE, Venue: Eaton Hotel or The Hong Kong Medical Association Central Premises, Dr. Li Shui Pui Professional Education Centre, 2/F., Chinese Club Building, 21-22 Connaught Road Central, Hong Kong

8:00 pm | HKMA Trailwalker Final Briefing Session | Miss Alice TANG & Miss Sharon HUNG Tel: 2527 8285
Organiser: HKMA Trailwalker Final Briefing Session, Venue: The Hong Kong Medical Association Central Premises, Dr. Li Shui Pui Professional Education Centre, 2/F., Chinese Club Building, 21-22 Connaught Road Central, Hong Kong

3 THU
2:30 pm / 6:30 pm | HKMA MPS CME – Mastering Adverse Outcome | HKMA CME Department 2.5 CME Points
Organiser: The Hong Kong Medical Association, Speakers: Dr. Emily HUNG, Dr. Andy CHEUNG, Dr. Danny LEE & Dr. Anthony FUNG, Venue: The Hong Kong Medical Association Central Premises, Dr. Li Shui Pui Professional Education Centre, 2/F., Chinese Club Building, 21-22 Connaught Road Central, or Holiday Inn

8:00 am – 9:00 am | Joint Surgical Symposium – Minimal Invasive Access for Head and Neck Surgery | Department of Surgery, Hong Kong Sanatorium & Hospital Tel: 2835 8698 Fax: 2892 7511 1 CME Point (Active)
Organiser: The University of Hong Kong & Hong Kong Sanatorium & Hospital, Chairman: Dr. Victor TO, Speakers: Dr. Wai-Kuen HO & Dr. Jonathan LAU, Venue: Hong Kong Sanatorium Hospital

1:00 pm | HKMA Shatin Doctors Network - Treatment Strategies in Major Depressive Disorder | Miss Candice TONG Tel: 2527 8285
Organiser: HKMA Shatin Doctors Network, Speaker: Dr. Cindy Put-yu CHIL, Venue: The Royal Park Hotel

4 FRI
2:00 pm | HKMA MPS CME – Mastering Professional Interactions | HKMA CME Department 2.5 CME Points
Organiser: The Hong Kong Medical Association, Speakers: Dr. Ka-lam HAU & Dr. Andy CHEUNG, Venue: Various

5 SAT
2:00 pm | HKMA Certificate Course on Family Medicine 2011 | HKMA CME Department 2.5 CME Points
Organiser: The Hong Kong Medical Association, Speakers: Prof. Martin Chi-sang WONG & Dr. Kelvin KA TSOL, Venue: Queen Elizabeth Hospital

1:00 pm | HKMA MPS CME – Mastering Difficult Interactions with Patients | Miss Alice TANG & Miss Sharon HUNG Tel: 2527 8285
Organiser: HKMA MPS CME, Speaker: Dr. Justin CHENG, Venue: Holiday Inn, or The Hong Kong Medical Association Central Premises, Dr. Li Shui Pui Professional Education Centre, 2/F., Chinese Club Building, 21-22 Connaught Road Central, Hong Kong

6 SUN
2:00 pm | HKMA CME Department 1.5 CME Points
Organiser: The Hong Kong Medical Association, Venue: Tai Po

8 TUE
1:00 pm | HKMA Kin West Community Network - Treatment of Major Depressive Disorder | Miss Candice TONG Tel: 2527 8285
Organiser: HKMA Kin West Community Network, Speakers: Dr. Andy CHEUNG & Dr. Bernard Siu-man CHAN, Venue: Various

9 WED
7:30 am | Hong Kong Neurosurgical Society Monthly Academic Meeting – War against Gioma: from Molecules to Patients | Dr. Gilberto LEUNG Tel: 2235 3368 Fax: 2818 4350
Organiser: Hong Kong Neurosurgical Society, Chairman: Dr. Danny CHAN, Speaker: Dr. Jane LAU, Venue: Seminar Room, G/F, Block A, Queen Elizabeth Hospital, Kowloon

1:00 pm | HKMA CW&S Community Network - Alternative Management of Vaginal Infection and Recurrent Vaginitis | Mr. Alan LAW Tel: 2527 8285
Organiser: HKMA CW&S Community Network, Speaker: Dr. Claire LAU, Venue: Central Premises

10 THU
12:45 pm | HKMA Kin West Community Network –Certificate Course on Allergic Rhinitis & Asthma | Mr. Alan LAW Tel: 2527 8285 1.5 CME Points
Organiser: HKMA Kin West Community Network, Speaker: Dr. Anthony Chung-yun CHAN, Venue: Lee Garden, Kwan Tong, Kowloon

1:00 pm | HKMA NTW Community Network –Update in Osteoporosis Management and the role of Bisphosphonates | Mr. Alan LAW Tel: 2527 8285
Organiser: HKMA NTW Community Network, Venue: Plentiful Delight Banquet, Yuen Long, NT

2:00 pm | HKMA Structured CME Programme with Hong Kong Sanatorium & Hospital Year 2011 – New Frontiers in Therapeutic Endoscopy | HKMA CME Department 1 CME Point
Organiser: The Hong Kong Medical Association, Chairman: Dr. Grace Sau-wai WONG, Speaker: Angus CW CHAN, Venue: The Hong Kong Medical Association Central Premises, Dr. Li Shui Pui Professional Education Centre, 2/F., Chinese Club Building, 21-22 Connaught Road Central, Hong Kong

13 SUN
2:30 pm | Refresher Course for Health Care Providers 2011/2012 | HKMA CME Department 2 CME Points
Organiser: HKMA Kin West Community Network, Speaker: Cecilia WONG, Venue: OLMH

15 TUE
1:00 pm | HKMA Family Sports Day | Miss Alice TANG & Miss Sharon HUNG Tel: 2527 8285
Organiser: The Hong Kong Medical Association, Venue: Stanley Ho Sports Centre

1:00 pm | HKMA Tennis Tournament | Miss Alice TANG & Miss Sharon HUNG Tel: 2527 8285
Organiser: The Hong Kong Medical Association, Venue: Kowloon Tong Club

1:00 pm | HKMA Kin West Community Network - Certificate Course on Eye Diseases (Session I – Session J) | Miss Candice TONG Tel: 2527 8285
Organiser: HKMA Kin West Community Network, Chairmen: Dr. Pak-chun CHOW, Dr. Bernard Siu-man CHAN & Dr. Kai-sing TONG, Venue: Lecture Theatre, LG2, Nurses Quarter, Princess Margaret Hospital, 232 Lai King Hill Road, Lai Chi Kok, Kowloon
This 85 year-old man noticed a red lump developed over his scalp for 6 months which rapidly increased in size. Similar new lesions occurred around the old ones with bleeding and ulceration (Fig 1). His past health was unremarkable and there was no history of trauma at the scalp. He has been seen by various doctors and tried various topical treatments with no improvement.

Questions:
1. What is your clinical diagnosis or differential diagnoses?
2. How will you confirm the diagnosis?
3. How will you manage this man?

(See P.32 for answers)
Answer to Dermatological Quiz

1. This elderly man developed these erythematous violaceous vascular haemangiomatous nodules and plaques over his scalp, which rapidly increased in size despite various treatments, together with new surrounding lesions arose while the old lesions ulcerated. The presentation was very suggestive of a malignant skin disease. The clinical diagnosis of angiosarcoma must be excluded. Other differential diagnoses would include Kaposi’s sarcoma and other borderline/low-grade malignant vascular neoplasms such as Kaposiform haemangioendothelioma. Benign vascular lesions such as pyogenic granuloma was less likely.

Angiosarcoma is an uncommon malignant neoplasm of the endothelium, accounting for less than 1% of all sarcomas. It has a predilection for the skin and superficial soft tissues and most commonly affects the scalp and face, particularly the head and neck. Angiosarcoma usually presents as a slow-growing mass, which may ulcerate and bleed. The typical presentation is a violaceous vascular haemangiomatous nodule, often with associated pruritus. The treatment is mainly palliative as all metastatic patients cannot receive early radical ablative surgery. For those fragile elderly patients surviving 5 years. Most long term survivors received early radical ablative surgery. The presentation was very suggestive of a malignant skin disease. The clinical diagnosis of angiosarcoma must be excluded. Other differential diagnoses would include Kaposi’s sarcoma and other borderline/low-grade malignant vascular neoplasms such as Kaposiform haemangioendothelioma. Benign vascular lesions such as pyogenic granuloma was less likely.

2. An urgent skin biopsy is needed to confirm or exclude the diagnosis of angiosarcoma. Histology of the scalp biopsy of this patient showed well to moderately-differentiated areas displaying an anastomosing network of sinusoidal vessels, most of them were bloodless, lined by a single layer of endothelial cells of slight to moderate nuclear atypia. These exhibited a highly infiltrative pattern, splitting apart collagen bundles and groups of adipose cells. Most angiosarcomas immunoreact positively for CD31 and CD34, with CD31 being the more sensitive and specific marker. They are also positive for CD34 and lack the positivity for factor VIII and Ulex Europaeus lectin, which are typically seen in haemangiomas. Histology of the scalp biopsy showed well to moderately-differentiated areas displaying an anastomosing network of sinusoidal vessels, most of them were bloodless, lined by a single layer of endothelial cells of slight to moderate nuclear atypia. These exhibited a highly infiltrative pattern, splitting apart collagen bundles and groups of adipose cells. Most angiosarcomas immunoreact positively for CD31 and CD34, with CD31 being the more sensitive and specific marker. They are also positive for CD34 and lack the positivity for factor VIII and Ulex Europaeus lectin, which are typically seen in haemangiomas. This elderly man developed these erythematous violaceous vascular haemangiomatous nodules and plaques over his scalp, which rapidly increased in size despite various treatments, together with new surrounding lesions arose while the old lesions ulcerated. The presentation was very suggestive of a malignant skin disease. The clinical diagnosis of angiosarcoma must be excluded. Other differential diagnoses would include Kaposi’s sarcoma and other borderline/low-grade malignant vascular neoplasms such as Kaposiform haemangioendothelioma. Benign vascular lesions such as pyogenic granuloma was less likely.

3. Wide local excision of clinically evident tumours with or without skin graft to achieve a negative surgical margin and then followed by wide field irradiation is recommended if the patient’s condition allows. The prognosis is relatively poor, with fewer than 15% of patients surviving 5 years. Most long term survivors received early radical ablative surgery. For those fragile elderly patients who cannot tolerate extensive surgical excision, radiotherapy alone can offer some local disease control. Metastatic disease is not uncommon and treatment is mainly palliative as all metastatic patients will eventually die of the disease.

Dr. Ka-ho LAU
MBBS(HK), FRCP(Edin, Glasg), FHKCP, FHKAM(Med) Yaumatei Dermatology Clinic, Social Hygiene Service

The Federation of Medical Societies of Hong Kong
4/F Duke of Windsor Social Service Building, 15 Hennessy Road, Wanchai, HK
Tel: 2527 8898 Fax: 2865 0345
The Federation
Annual Dinner 2011

31st December, 2011 (Sat)
Run Run Shaw Hall
The Hong Kong Academy of Medicine Jockey Club Building
Performers of the evening: Ms. Suzan Guterres & Mr. Howard McCrary

Casablanca

Enjoy an Elegant & Chic New Year's Eve Celebration with our Federation's Friends!

Book your tickets now ($1,000 HKD per person)
- Free Raffle Tickets for Early Bird before Oct 31
- Top Raffle Prizes include Cathay Pacific air tickets & Swire Travel travel coupons
- Gaming tables for charity

Call the Federation Secretariat on 2527-8898 to reserve your tables!

Ms. Suzan Guterres - one of the most glamorous and gorgeous stars of our very own Hong Kong's entertainment industry, and has recently released her fabulous audiophile "Colors of Suzan".

Mr. Howard McCrary - The renowned, award winning singer, songwriter, producer, and also a Grammy Award nominee, who has worked with some of the US's most prestigious Artists such as Quincy Jones, Michael Jackson, Chaka Khan, Edwin Hawkins to name a few.

THE FEDERATION OF MEDICAL SOCIETIES OF HONG KONG