When standard therapy is not enough, why not choose BENLYSTA?

- Superior disease activity reduction at week 52†††
- Reduced risk of severe SLE flares over 52 weeks
- Reduction in cumulative steroid dose over weeks 52
- Rate of adverse events were similar between BENLYSTA and placebo
- Emerging evidence on organ damage progression
- Fewer patients experienced renal flares vs standard therapy alone in patients with baseline proteinuria >0.5g/24hrs

Physicians should exercise caution when considering the use of BENLYSTA in patients with chronic infections or a history of recurrent infection. Live vaccines should not be given for 30 days before, or concurrently with BENLYSTA.1

BENLYSTA (belimumab) Integrated Safety Information

Contraindications:
- Physicians should exercise caution when considering the use of BENLYSTA in patients with chronic infections or a history of recurrent infection. Live vaccines should not be given for 30 days before, or concurrently with BENLYSTA.1
- Patients who have a history of multiple drug allergies or significant delayed-type, non-acute hypersensitivity reactions should not be given BENLYSTA.1
- BENLYSTA is contraindicated in patients with a history of malignancy or who develop malignancy whilst receiving treatment. Administration of BENLYSTA should be discontinued in patients who develop uncontrolled malignancy while receiving treatment. Administration of BENLYSTA after the haemoglobin level in patients with significant anemia (defined as haemoglobin <10g/dl) has been observed in clinical studies.1

Warnings and Precautions:
- Hypersensitivity: in patients with severe active central nervous system lupus, severe active lupus nephritis, ESR ≥60mm/h at 1 month (except if ≥100mm/h at 1 month), and patients with a history of major organ transplant or hematopoietic stem/Cell/marrow transplant or renal transplant. Caution in patients receiving other B cell targeted therapy or cyclophosphamide.
- Administration of BENLYSTA may result in hypersensitivity reactions and infusion reactions which can be severe and fatal. In the event of a severe reaction, BENLYSTA administration must be interrupted and appropriate medical therapy administered. Physicians should exercise caution when considering belimumab therapy in patients with severe or chronic infections or a history of mucocutaneous infection. Patients undergoing rituximab therapy may develop exacerbations of infections with or without new or worsening symptoms.
- Concomitant use of belimumab with TNF antagonists or other immunosuppressant therapies, including belimumab, until the infection is resolved.
- Physicians should exercise caution when considering belimumab therapy for patients with a history of malignancy or when considering continuing treatment in patients who develop malignancy.

The following adverse events have been reported with a frequency of ≥1% in the following studies: belimumab 1 mg/kg qw (n=1082) involving up to 11/30 patients: Bacterial infections, including pneumonia; respiratory infections, including sinusitis and pharyngitis; urinary tract infections; nasopharyngitis; chills; sinusitis; rhinitis; gastrointestinal infections; upper respiratory infections; sinusitis; conjunctivitis.

The material for the reference and use by healthcare professionals only. For adverse event reporting, please call GlaxoSmithKline Limited at 0852-3189 8999 (Hong Kong). Full Prescribing Information is available upon request. Please read the full prescribing information prior to administration, available from GlaxoSmithKline Limited. Trade marks are owned by or licensed to the Glaxo group of companies. ©2019 Glaxo group of companies or its licensors.
"The concept behind this painting revolves around the Greek gods and goddesses of healing: Apollo, Asclepius, Panacea and Hygieia (from right to left), and around some medicinal flowers including evening primrose, hawthorne and St. John's wort," says Ms Emika Suzuki.

The painting has been hand-drawn by Ms Emika Suzuki, one of our paediatric rheumatology patients, who has a flair for the linguistics and arts. She is currently interning for a magazine.
The welcome message of the Chinese New Year of Ox

Dr Mario WK CHAK
President
The Federation of Medical Societies of Hong Kong

送鼠迎牛，庖丁解牛！
祝大家牛年进步！一团和气！身体健康！

庖 here means the cook. 丁 (Ding) is a person’s name. 解 means to dissect something. 牛 is an ox. We use this phrase to indicate that someone can do his work with a kind of magical, skillful craftsmanship just like the cook Ding. Such a person is highly respected by people thanks to his professionalism. Although written many years ago, this proverb ‘庖丁解牛’ continues to convey words of great wisdom and a moral message today in how to face the challenges of COVID-19.

The pandemic of COVID-19, no doubt, is a threat to humanity, considering the state of emergency declared by the World Health Organization as a result of the rapid spread and severity of the deadly virus across the globe. On the other hand, the COVID-19 pandemic also gives rise to great opportunities in scientific and clinical research, as well as in technological innovation, with the goal of assisting frontline healthcare workers in battles to eradicate the pandemic, and of facilitating the general public to identify ways to prevent and control the rapid spread of the virus.

In an auspicious gesture to welcome the Chinese New Year, I would like to share with you what the Federation has accomplished in the past year.

Due to the COVID-19 pandemic, several projects have been suspended in 2020, namely the charity project for children in need and public talks in 2020, namely the charity project for children in need and public talks in 2020. Due to the COVID-19 pandemic, several projects have been suspended in 2020, namely the charity project for children in need and public talks in 2020. However, the Federation has endeavoured to keep up the momentum of advocating and promoting medical care and public health education for the community; but the momentum of advocating and promoting medical care and public health education for the community; but the momentum of advocating and promoting medical care and public health education for the community.

With the aim to better gauge the COVID-19 infection situation in Hong Kong and to dig out asymptomatic patients as early as possible to achieve early identification, early isolation and early treatment, and to cut off virus transmission in the community, the Universal Community Testing Programme (UCTP), a virus testing offered to all Hong Kong residents free of charge, was held between 1-14 September 2020 at 118 centres set up in 18 districts. A total of about 1,783,000 people participated in the UCTP and went through the massive testing for COVID-19. Thanks to the support from our member societies and friends, the Federation successfully recruited over 130 healthcare professionals and para-professionals and para-professionals and para-professionals to provide swabbing service to the public. A Federation Team was set up with 67 healthcare professionals and para-professionals to manage the service centre at the Lockhart Road Sports Centre between 1-7 September 2020 and the Hong Kong City Hall between 7-14 September 2020. Over 11,502 tests were done by the Federation Team at the above centres.

During the COVID-19 pandemic, most of our regular events and meetings have been suspended especially in the first half of 2020. Through tremendous efforts, we have transformed our on-site events, courses and seminars into web-based activities successfully. In the second half of year, with the support of member societies and their
members, the Federation organised a number of web-based professional projects/activities, including online certificates courses, symposia, conferences and annual scientific meetings.

As a result of the COVID-19 pandemic, all certificate courses in 2020 were conducted in pre-recorded video format; participants were allowed to watch the videos within three days, with a maximum of 3 times login and access allowed for each video link. It gives a lot of flexibility to the healthcare professionals as they were allowed to continue their learning after a busy workday. Fourteen video courses were held from February to December 2020. The topics during this year ranged diversely and spanned across different disciplines from Cardiology, Allergy, Communication and Swallowing Problems in the Elderly Population, Clinical Cytogenetics and Genetics, Complaint Management, Mental Health, Ophthalmology, Renal Medicine, Respiratory Medicine, Ultrasound Diagnostics of Fetal Anomalies, to Update in Clinical Sleep Medicine and Clinical Toxicology. All were well organised and well attended with encouraging turnout. I would like to profusely thank our healthcare professionals for their robust support.

Owing to the unlimited quotas for enrollment, the total number of participants has increased by 27 percent compared to that of 2019. Over 80 percent of participants preferred to stay with the video format even when the epidemic is over.

One of the services greatly appreciated by our member societies is our meeting- and conference-organising services. In the face of the COVID-19 pandemic, the Federation has extended our services to the organisation of web-based events; for example, webinars, online AGMs, pre-recorded video lectures, and so forth in an effort to support our member societies and medical professionals. We provide support in the 28th annual scientific congress organised by The Hong Kong College of Cardiology and the AGM and scientific meeting of The Hong Kong Society of Child Neurology and Developmental Paediatricians. All these cyber meetings were well attended by members and fellow professionals.

For the Hong Kong Medical Diary, apart from the usual monthly issue on different specialties and subspecialties, a special issue on COVID-19 was published in January 2021 to highlight hot topics related to immunity, intensive care, new treatment and vaccine of COVID-19.

Finally, I would like to thank, for your great efforts and staunch support in the year 2020, our Officers, EXCO members, Foundation directors, council members and staff of the secretarial board. We could not have succeeded without your collaboration. Riding on your continued support for and contribution to the Federation, we are confident in further excelling in the forthcoming Chinese New Year of the Ox.

We look forward to working alongside you all in the near future.

Once again, on behalf of the Federation, I wish you and your family all the best, and may you all have a happy, healthy, wealthy and prosperous Chinese New Year of the Ox.
Pioneer Leader in Biosimilars

- With EIGHT marketed products and a strong pipeline in Oncology and Immunology\(^1\)
- Driving worldwide recognition of biosimilars as safe and effective medicines
- Repeatedly innovating to break new ground\(^1\), launched the first biosimilar in:

\[\begin{array}{ccc}
\text{Omnitrope}^\circ & \text{Omnitrope}^\circ & \text{ZARZIO}^\circ \\
\text{Somatropin 3.3mg/ml} & \text{Somatropin 3.3mg/ml} & \text{signed in} \\
2006 & 2009 & 2015
\end{array}\]

World-class Expertise

In development, manufacturing and delivery of biosimilars to the healthcare community and patients

- ANALYTICAL
- CLINICAL
- MANUFACTURING
- REGULATORY

Unparalleled Heritage Longer than Any Other Company

- Biotechnology experience dating back to the 1940s\(^1\)
- Over 20 years of experience in biosimilar development\(^1\)

Editorial

Dr Winnie Kwai-yu CHAN

President
Hong Kong Society for Paediatric Rheumatology

Our Society is excited to take this opportunity to share with the readers of the Hong Kong Medical Diary an update on various diseases in Paediatric Rheumatology. We hope to raise our colleagues’ awareness of rheumatic diseases in children through these snapshot articles. These problems are common in the adult population, and they could inflict children too. The presentations may be subtle, and the diagnosis may be challenging to arrive at initially. Without a high index of suspicion, the window of opportunity to treat may be missed.

Paediatric Rheumatology is one of the newest and least populated paediatric subspecialties, coming slowly to the attention of medical professionals after the Second World War. Along with the realisation that rheumatic diseases in children are distinct, the burgeoning of new technology, and the advent of modern medications, the organisation of Paediatric Rheumatology as a subspecialty blossomed since the 1970s. At present, Paediatric Rheumatology is a developed subspecialty in many countries and continues to thrive with the support from two large international networks, the Paediatric Rheumatology Collaborative Study Group (PRCSG) and the Paediatric Rheumatology International Trials Organisation (PRINTO).

In this issue, members of our Society will try to cover a wide variety of rheumatic diseases in childhood. “Joint pain” is a common complaint in children. Often, the discomfort may not be arising from genuine arthritis, and the patient may not be able to give a consistent history. Acute arthritis can be disabling and is not merely an orthopaedic problem. Dr SY Kong will discuss the clinical approach to this common encounter. Differential diagnosis and management aspects are addressed. Ten CME questions have been set, and our readers can quickly get a full mark after reading her article. Juvenile Idiopathic Arthritis (JIA) is the most familiar rheumatic disease worldwide. The diagnosis embraces several clinical entities. Dr Roanna Yeung will discuss one of the most typical JIA subtypes that we frequently encounter in our Rheumatology clinics - enthesitis-related arthritis (ERA). This category is unique in children, and interestingly is related to various chronic arthritis types in the adult population. ERA is a challenging subtype of JIA to many paediatric rheumatologists. With the advancement in technology, biologics have become a cornerstone in the management of children with rheumatic disease. Dr Assunta Ho will give a brief account on the biologic DMARDs used in children with JIA. Possible complications, side effects and safety concerns are discussed.

ANCA-vasculitis, on the other hand, is a relatively rare rheumatic disease in children. It may present acutely as an organ-threatening scenario. High level of suspicion with prompt treatment is life-saving. Dr Grace Chiang will lead us through this challenging topic and highlight the critical issues. Comparing with ANCA-vasculitis, systemic lupus erythematosus (SLE) is relatively more common, and differs from its adult counterpart in several ways. Childhood-onset SLE carries a poorer prognosis than adults. The impact on growth and puberty could cause severe morbidity. Adherence to medical treatment during the adolescent period is a universal challenge. A brief overview of this topic, and short notes on various management approach will be highlighted in the “Overview of Childhood-onset Systemic Lupus Erythematosus”.

Life is always exciting and fascinating. Dr Karen Lau, a paediatrician full of artistic ability, will lead us to explore the City’s weekend markets, where you can find fine works of art, painting, drawing, crafts, and a lot more. It is an excellent way to immerse in the local culture. "Small shops with big ideas" is the theme of these weekend markets and likewise despite our Society being a small subspecialty, we are dedicated to improving the health care of children with rheumatic disease.

References

Acute Arthritis in Children

Dr KONG Sum-yi
MBChB, MRCPCH, FHKAM, FHKCPaed
Honorary Secretary, Hong Kong Society for Paediatric Rheumatology

INTRODUCTION

Musculoskeletal pain is a common complaint in the child and the adolescent. Not all patients with complaints of “joint pain” have pathology at the joint (articular vs non-articular musculoskeletal pain) and not all patients having articular joint pain (arthralgia) have arthritis (inflammatory vs non-inflammatory joint pain). This article will focus on acute inflammatory arthritic conditions in children.

DEFINITION

Arthritis is defined as swelling within a joint, or limitation in the range of joint movement associated with joint pain or tenderness.

GENERAL APPROACH

Pattern recognition is of utmost importance during clinical evaluation to differentiate among the various conditions. History taking should cover the onset and duration of symptoms, site and pattern of joint involvement, precipitating factors, fever, any antecedent illness and systemic review of associated complaints. Chronic arthritis can present as sudden onset of painful and swollen joints. Such abrupt presentation may be mistaken as acute arthritis due to trauma or infection. Morning stiffness is a frequent complaint in the adult patient with rheumatoid arthritis, manifested as soreness and restriction in movement upon awakening. It is believed to be the result of fluid accumulation within the inflamed tissue during sleep. It eases up after the joints are used for a while. It is a cardinal sign of inflammatory arthritis; however, it may be difficult to get this bit of information in young children.

Physical assessment should involve both focused joint assessment and systemic clinical examinations. Positive systemic signs are informative in arriving at the diagnosis. Pediatric Gait Arms Legs and Spine (pGALS) is a useful screening tool for children’s musculoskeletal system. It provides a fundamental skill for general practitioners to detect early sign(s) of joint disease in children. It has been validated in school-aged children and in the setting of general paediatrics.

DIFFERENTIAL DIAGNOSIS OF ACUTE ARTHRITIS

The differential diagnosis can be categorised according to whether the pathological process has arisen from an inflammatory versus non-inflammatory origin. Inflammatory arthritis can be caused by an infective agent or as a result of an immune-mediated reaction. The causes are summarised in Table 1.

Arthritis (inflammatory	Infectious arthritis:
articular joint pain)	- Septic arthritis
	- Viral arthritis: Parvovirus B19, hepatitis viruses, rubella, HIV, EBV, VZV, Mumps, CMV, HSV, adenovirus, cossackievirus, alphavirus, Chikungunya virus
	- Lyme disease
Non-infectious arthritis:	- Idiopathic: transient synovitis
	- Post-infectious / Reactive arthritis: acute rheumatic fever, post-streptococcal reactive arthritis, preceding episode of respiratory, gastrointestinal or genitourinary infection
	- Rheumatological conditions: juvenile idiopathic arthritis (JIA), systemic lupus erythematosus (SLE), juvenile dermatomyositis (JDM), Behçet disease
	- Systemic vasculitides: Kawasaki disease (KD), Henoch-Schonlein purpura (HSP)
	- Neoplastic: leukaemia
	- Miscellaneous: serum sickness, sarcoidosis

Non-inflammatory	Trauma: accidental, non-accidental
articular joint pain	Haematological: acute haemarthrosis
	Osteoarthritis: Legg-Calvé-Perthes disease
	Osteonecrosis: Legg-Calvé-Perthes disease
	Osteochondrosis: Osgood Schlatter disease
	Idiopathic/ unclassified: Slipped capital femoral epiphysis

Non-articular musculoskeletal pain	Idiopathic: Growing pain, fibromyalgia, etc
	Neoplasm: leukaemia, osteosarcoma, osteoid osteoma
	Vaso-occlusive pain in sickle cell disease
Septic Arthritis

Septic arthritis is a more common musculoskeletal infection than osteomyelitis. It happens at any age with a peak before the age of 6 years. The majority (~80%) involves joints of the lower limb with hip and knee being the most common sites. Up to 10% of cases have more than one joint involvement. It presents acutely in 2 to 5 days with high fever, constitutional symptoms (e.g., irritability, poor feeding) and severe continuous arthralgia. Clinically there will be significant periarticular symptoms with effusion and limited range of movement. Inflammatory markers are usually raised, and a normal C-reactive protein (CRP) carries an excellent negative predictive value (87%) for septic arthritis. Increased joint space in the plain radiograph is usually not sensitive nor useful at the initial stage. Ultrasound (USG) is sensitive in detecting effusion and is used to assist in synovial fluid aspiration. Magnetic resonance imaging (MRI) gives additional information for joint destruction and changes of osteomyelitis. Diagnosis is confirmed via a positive culture from the synovial fluid analysis. Prompt treatment is crucial to minimise long-term damage to the bones and joint. Surgical drainage and lavage for decompression and removal of inflammatory debris can be performed to preserve synovium and collagen matrix. Antibiotics covering S. aureus (the most common pathogens in children) should be initiated empirically and subsequent choice of agents is directed by pathogens isolated. Duration of antibiotic treatment is usually two to three weeks. Complications rate are high in those with delayed diagnosis (duration of symptoms more than 4 to 7 days), deep joint involvement (e.g. hip and shoulder), young age (infants less than one year old, particularly neonates).1-3

Transient Synovitis

Transient synovitis is one of the commonest non-infectious acute arthritis in children usually seen in age 3 to 8 years old with the hip being the commonest site of involvement. It presents as limping gait in the absence of high fever. Weight bearing can still be possible, and half of them have preceding upper respiratory tract infection. The exact cause is unknown, and the pathology shows non-specific synovitis. It is important to exclude septic arthritis as their treatment and outcome are different. The presence of high fever, non-weight bearing, erythrocyte sedimentation rate of > or = 40 mm/hour, white cell count usually is < 50,000 cells/mL. Prevalence and worse prognosis are seen associated with HLA-B27, but the exact mechanism is unknown. Initial treatment would be pain control by NSAID. Refractory cases may require consideration of glucocorticoids (either intraarticular or systemic). The prognosis is generally good, and the arthritis usually resolves without any sequela in 97 to 99 per cent of cases.

Post-streptococcal Arthritis

Group A beta-haemolytic Streptococcus is well-known in causing several post-infectious, non-suppurative immune-mediated diseases. Acute rheumatic fever and post-streptococcal arthritis are two of these diseases which may present with arthritis in the early course. Arthritis typically occurs 7-10 days after the streptococcus infection, or the patient may have a preceding sore throat. The knees, ankles, hips and wrists are commonly involved. The arthritis is not migratory, and other features of Jone's Criteria for Acute Rheumatic fever is absent. The joint pain may persist and recur. A raised ASOT or positive streptococcus culture helps in making the diagnosis. These patients may need monitoring for any carditis.

Lyme Disease-related Arthritis

Borrelia burgdorferi, the spirochete causing Lyme disease, is spread by tick (Ixodes spp) found in the temperate zone of the northern hemisphere. Symptoms begin with an influenza-like illness day to weeks following a tick bite with or without associated arthralgia. Erythema migrans, an enlarging warm painless erythematous rash, may follow. Neuroborreliosis with facial nerve palsy and aseptic meningitis may develop weeks to months later following the infection. Arthritis, commonly intermittent monoarthritis, can occur months to years following the tick bite. Acute Lyme arthritis can be treated with oral doxycycline at 4.4 mg/kg/day, amoxicillin at 50 mg/kg/day or cefuroxime at 30 mg/kg/day for 10 to 14 days. Doxycycline at 4.4 mg/kg/day, amoxicillin at 50 mg/kg/day or cefuroxime at 30 mg/kg/day for 10 to 14 days. Managing Lyme arthritis is sometimes difficult as the characteristic clinical features are only seen in 40-70% of patients and the serology test is at times difficult to interpret given its high incidence of false positivity.

Juvenile Idiopathic Arthritis

Juvenile idiopathic arthritis (JIA) is a common form of acute arthritis with a chronic course in children diagnosed at the age younger than 16 years with symptoms lasting for more than six weeks. It is further sub-classified into six categories depending on the pattern of involvement and systemic features. The categories are systemic JIA, polyarticular JIA (rheumatoid factor positive or negative), oligoarticular JIA (persistent or extended), enthesitis-related arthritis (ERA), psoriatic arthritis and undifferentiated arthritis. Serology testing in JIA helps to classify the different types of JIA. RF positivity is mostly seen in the polyarticular course and may mimic rheumatoid arthritis of the adult. Positive antinuclear factor (ANF) is associated with risk of uveitis; HLA-B27 positivity is related to ERA and spondyloarthritis. The prognosis and treatment considerations depend on the disease categories.
Systemic onset JIA is a distinct type of JIA. It frequently presents as extra-articular symptoms with high swing fever in a quotidian pattern, evanescent erythematous rash, and lymphadenopathy. Macrophage activation syndrome is a severe complication in, particularly systemic-onset JIA.

CONCLUSION

Musculoskeletal pain in children comprises a wide range of conditions from benign and transient to chronic and malignant. Pattern recognition from detailed history and comprehensive clinical assessment is required to decide on optimal investigation plan and treatment regimen.

References

Radiology Quiz

Dr Leanne Han-qing CHIN
MBBS, FRCR

Case history:

A 16-year-old boy with good past health presented to the General Out-Patient Clinic for persistent pain and weakness of his left arm for two weeks, despite having sought treatment from a bonesetter. He volunteered a history of left sided shoulder injury one month ago during sudden deceleration of a bus ride whilst holding onto a handrail. Physical examination revealed mild tenderness with limited left arm abduction, and limited internal and external rotation. X-ray of the left shoulder is shown here.

Questions

1. Is the shoulder alignment normal?
2. Is the bone normal?
3. What specific abnormal periosteal reactions are seen?
4. What are the possible differential diagnoses?
5. What is the next step of management?

(See P.32 for answers)
MCHK CME Programme Self-assessment Questions

Please read the article entitled “Acute Arthritis in Children” by Dr KONG Sum-yi and complete the following self-assessment questions. Participants in the MCHK CME Programme will be awarded CME credit under the Programme for returning completed answer sheets via fax (2865 0345) or by mail to the Federation Secretariat on or before 28 February 2021. Answers to questions will be provided in the next issue of The Hong Kong Medical Diary.

Questions 1-10: Please answer T (true) or F (false)

1. Painful joint conditions in children are always inflammatory in origin.
2. Morning stiffness is a sign of inflammatory arthritis.
3. pGALS is a screening tool used in musculoskeletal assessment in children.
4. Acute arthritis in children requires antibiotic treatment when associated with fever.
5. Acute arthritis with positive ASOT is always acute rheumatic fever.
6. Lyme disease is common in Hong Kong.
7. Tics are the vector for transmission of Lyme disease.
8. Post-streptococcal infection can cause arthritis without carditis.
9. Defining the categories of juvenile idiopathic arthritis is vital in treatment planning.
10. Arthritis may not be the presenting features in systemic-onset JIA.

ANSWER SHEET FOR FEBRUARY 2021

Please return the completed answer sheet to the Federation Secretariat on or before 28 February 2021 for documentation. 1 CME point will be awarded for answering the MCHK CME programme (for non-specialists) self-assessment questions.

Acute Arthritis in Children

Dr KONG Sum-yi
MBChB, MRCPCH, FHKAM, FHKCPaed
Honorary Secretary, Hong Kong Society for Paediatric Rheumatology

1 2 3 4 5 6 7 8 9 10

Name (block letters):____________________________ HKMA No.: _______________ CDSHK No.: ________________
HKID No.: __ __ - __ __ __ __ X X (X) HKDU No.: _______________ HKAM No.: ________________
Contact Tel No.:______________________________ MCHK No. / DCHK No.: ________________ (must fill in)

Answers to January 2021 Issue

COVID-19 Re-infection, Two Contrasting Cases, and Many More to Come

Understanding Enthesitis-related Arthritis

Dr Roanna Hoi-man YEUNG
MBBS, FHKCPaed, FHKAM
Honorary Treasurer, Hong Kong Society for Paediatric Rheumatology

INTRODUCTION

Juvenile idiopathic arthritis (JIA) is the most common rheumatic disease in children. In the Caucasian population, the incidence of JIA is 16-150 per 100,0001. It refers to a heterogeneous group of arthritis with onset in the paediatric age group before the 16th birthday, running a chronic course of more than six weeks, with other known medical causes excluded. The latest accepted classification of JIA was published by the International League of Associations for Rheumatology (ILAR) in 1997, which was further revised in 2001. Under this classification system, JIA is divided into seven mutually exclusive subgroups: systemic arthritis, oligoarthritis (persistent and extended forms), rheumatoid factor-positive polyarthritis, rheumatoid factor-negative polyarthritis, psoriatic arthritis, enthesitis-related arthritis (ERA) and undifferentiated arthritis2. The ILAR definition of ERA is outlined in table 1.

Table 1. Definition of ERA from International League of Associations for Rheumatology (ILAR), 2004. Excerpted from Petty RE et al2

<table>
<thead>
<tr>
<th>Enthesitis-related arthritis (ERA) is defined as:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Arthritis and enthesitis, OR</td>
</tr>
<tr>
<td>- Arthritis or enthesitis, with at least two of the following:</td>
</tr>
<tr>
<td>- Sacroiliac joint tenderness and/or inflammatory spinal pain</td>
</tr>
<tr>
<td>- Presence of HLA B27</td>
</tr>
<tr>
<td>- Acute symptomatic anterior uveitis</td>
</tr>
</tbody>
</table>

The exclusion criteria are: the presence of psoriasis or a history of psoriasis inpatient or a first-degree relative, presence of rheumatoid factor IgM on at least two occasions that are at least 3 months apart, or presence of systemic arthritis.

EPIDEMIOLOGY

Incidence of ERA varies worldwide. In general, it is quoted that 10-20% of JIA patients have ERA3. However, it has been noted that in patients of Asian descent, particularly in Chinese, ERA remains to be the most common subtype. A retrospective review in Taiwan reported that ERA was the single largest category with an incidence close to 40%4. A recently-published Singaporean JIA registry also found ERA to be the most common JIA subtype accounting for 33% of all their JIA patients5. A Canadian study involving patients from multiple ethnic descents also confirms this fact6. As one would expect, after going through the ILAR definition, male preponderance is observed in ERA, with the proportion as high as 80%4. Older age of onset is also observed in ERA patients, and a recently published series found the mean age of onset or diagnosis to be 10-15 years of age7.

HLA B27 POSITIVITY

HLA B27 positivity is also observed in the majority of ERA patients. A Polish study found HLA B27 positivity in around one-third of all JIA patients, and 71% of ERA patients had HLA B27 positivity8. The aforementioned Taiwanese study found an exceedingly high percentage of 97% of ERA patients being HLA B27-positive4. It is also useful to note that HLA B27 can also be found in a significant proportion of patients with juvenile psoriatic arthritis though less than that of ERA. The importance of HLA B27, apart from aiding diagnosis of ERA, also lies in its prediction of a more chronic clinical course9.

CLINICAL PRESENTATION AND DIAGNOSIS

ERA is hallmarked by the presence of arthritis, enthesitis and anterior uveitis. The pattern of arthritis in ERA is typically oligoarticular, asymmetrical and predominantly affecting the large joints of the lower limbs. The most commonly affected joints are the hips, knees and ankles. Axial disease is also common in ERA, with up to 50% ERA patients having evidence of clinical or radiographic sacroiliac disease. Axial disease is typically not present at the initial diagnosis of ERA but develops as the disease progresses. By 5 years after disease onset, up to 92% of ERA patients were found to have symptomatic axial disease involvement10.

Enthesitis is present in around 60-80% of ERA patients. Enthesis is the connection between a tendon, ligament or joint capsule and bone. The most common sites for enthesitis in ERA patients are at the lower limbs, notably the insertion of the patellar ligament at the inferior pole, the insertion of the plantar fascia at the calcaneus, and the insertion of the tendon Achilles at the calcaneus11.

Extra-articular manifestations in ERA may occur before the onset of articular symptoms. The most important extra-articular manifestation to watch out for is acute symptomatic anterior uveitis. This uveitis is painful, as opposed to the asymptomatic nature of the uveitis that occurs in ANA-positive JIA patients. Incidence of anterior uveitis in ERA patients was observed to be 5-10%12.

There is no single confirmatory test for the diagnosis of ERA. Peripheral arthritis and enthesitis may be
elicted on physical examination. Axial arthritis may be indicated by the presence of inflammatory back pain (insidious onset lower back pain at age less than 40 years, that improves with exercise and associated with more than thirty minutes of morning stiffness, or alternating buttock pain)\(^{12}\). ILAR defines sacroilitis as the presence of tenderness on direct compression over the sacroiliac joint\(^2\). The modified Schober’s test or Patrick’s test may also be used to look for any lumbo-sacral involvement. However, in detecting axial involvement by physical examination, one study quoted only 23% sensitivity and 68% specificity\(^{13}\). Another study also reported that 21% of children with radiographic evidence of sacroilitis were clinically silent\(^{14}\).

Traditionally, X-rays have been used to detect sacroilitis. The typical signs one could find on X-rays are blurring of the joint margins, sclerosis, erosions and ankylosis. Radiographic sacroilitis was recognised as part of the diagnostic criteria for adult ankylosing spondylitis back in 1961\(^{15}\). However, given these radiographic signs represent already-established structural changes; the detection of these radiographic changes may delay the diagnosis of axial disease by years. Would MRI be a more sensitive tool in detecting sacroilitis? In adults, MRI of the sacroiliac joints has been shown to reveal early disease process ahead of structural changes in adult spondyloarthropathy with symptoms, using the STIR (Short TI Inversion Recovery) sequencing. Whole-body MRI has also been proposed to assess early axial skeletal disease in adults\(^{16}\). The Assessment in SpondyloArthritis International Society (ASAS) has put forward diagnostic criteria for “positive MRI sacroilitis” which emphasises on the presence of bone oedema and osteitis to diagnosis the presence of active sacroilitis\(^{17}\). Timely detection and treatment of sacroilitis are important to prevent structural damage and future functional morbidities.

Blood test for the HLA B27 allele is helpful for the diagnosis of ERA, but the absence of HLA B27 allele does not oppose the diagnosis. Serum inflammatory markers C-reactive protein and erythrocyte sedimentation rate may be elevated, but a normal value does not exclude the presence of active disease. Rheumatoid factor and antinuclear factor are negative in ERA patients.

MANAGEMENT

Management of ERA, as with all forms of chronic arthritis, is multidisciplinary. One must not undermine the importance of physical therapy and occupational therapy as well as the long-term management of the psychosocial aspects of the disease. The medical treatment of ERA is largely based on that of adult ankylosing spondylarthropathy and other forms of JIA. Non-steroidal anti-inflammatory drugs (NSAIDs), conventional disease-modifying anti-rheumatic drugs (DMARDs) and biologic DMARDs are the mainstays of treatment.

NSAIDs remain the first-line drug for JIA patients, including those with ERA. It can be used as monotherapy, or in conjunction with DMARDs. Commonly-used NSAIDs include ibuprofen, indomethacin, naproxen and diclofenac. In older children, one may consider the use of COX-2 inhibitors such as etoricoxib. The use of NSAIDs as monotherapy is not recommended for more than two months. If the disease remains active, one may consider the use of intra-articular steroid injection and a short course of bridging oral steroids while a trial with DMARD is used.

Methotrexate is one of the well-established DMARDs in treating JIA. It is an anti-metabolite that inhibits enzymes involved in purine metabolism. The usual methotrexate dose is 10-15 mg/m\(^2\) once a week administered orally or by subcutaneous injection. Common side effects include gastrointestinal upset, oral ulcers, deranged liver function and cytopenias. The bioavailability and side effect profile of subcutaneous methotrexate has shown to be better than the oral form. Methotrexate has been shown to be efficacious in treating peripheral arthritis, but not for sacroilitis and enthesitis.

Sulphasalazine is another common DMARD for use in ERA. The drug is broken down by intestinal bacteria into sulphapyridine and 5-aminosalicylic acid, which in turn act as immunosuppressants and anti-inflammatory drugs in addition to their anti-microbial properties. The usual dose of sulphasalazine is 30-60 mg/kg/day taken orally, and the dose is usually titrated over weeks. Side effects include gastrointestinal upset, bone marrow suppression, skin rash, Stevens-Johnson syndrome and deranged liver function. Sulphasalazine has been shown to achieve remission in small open-label trials. In a 26-week double-blinded trial of thirty-three ERA patients randomised to either sulphasalazine or placebo, there were significant improvements in physicians’ and patients’ efficacy assessments, but not in active joint counts, tender enthesis, anterior spinal flexion, morning stiffness, or pain visual analogue scales\(^{18}\).

Biologic DMARDs have been proven effective in treating not only arthritis but also enthesitis and axial disease in adult spondyloarthritis. As of now, TNF-agents etanercept and adalimumab and T-cell co-stimulation inhibitor abatacept have been approved for use in non-systemic JIA. Several prospective trials have been conducted internationally for the use of etanercept and adalimumab in ERA patients with most trials focusing on etanercept, a reasonable choice as etanercept was the first anti-TNF agent approved for use in JIA. These trials have produced promising results showing improvements in active joint counts, enthesis, low back pain, patient/parent/physician global assessments, and reduction of inflammatory markers. Improvement has been shown to sustain till week 52 in a multicentre trial for adalimumab. Serious adverse effects were observed in ≤ 6% of patients, mostly being serious infections\(^{19-22}\).

Etanercept is a chimeric fusion protein that binds to the TNF receptor, thereby blocking it. It has been approved by the FDA for use in patients with ERA and psoriatic arthritis at 12 years of age or above, as well as polyarticular JIA patients at two years of age or above. The usual dosage is 0.4 mg/kg (max dose 25 mg) twice a week, or 0.8 mg/kg (max dose 50 mg) once a week by subcutaneous injection. Adalimumab is a fully-humanised monoclonal antibody to the
TNF receptor. It has been approved by the FDA for use in ERA patients at six years of age or older, and polyarticular JIA patients at two years of age or older. It is usually prescribed as fixed dosing of 10 mg for 10 kg to < 15 kg, 20 mg for 15 kg to < 30 kg and 40 mg for ≥ 30 kg, every other week, administered subcutaneously. Both Etanercept and Adalimumab can be used as monotherapy or in combination with methotrexate. Main side effects of biologic DMARDs include infections, in particular, tuberculosis infection. Other side effects include allergic reactions and a potential risk for malignancy, in particular lymphoma23. Therefore, prior to the start of an anti-TNF agent, one must screen for the presence of active or latent tuberculosis infection, and continue to monitor for any possible tuberculosis infections throughout the treatment. A consensus statement has been published just recently by the JIA Groupwork of the Hong Kong Society for Paediatric Rheumatology regarding the use of biologic DMARDs24.

CONCLUSION

Enthesitis-related arthritis is a subcategory of juvenile idiopathic arthritis that is characterised by its HLA B27 association and axial involvement. MRI STIR sequence may facilitate earlier detection of axial disease. Current treatment of ERA includes the use of non-medical modalities as well as medical treatment using NSAIDs, conventional DMARDs and promising biologic DMARDs.
With 20 years of clinical trial experience starting with RA¹

Currently used by more than 1,000,000 patients worldwide and with 15 indications in Hong Kong²,³

Building success through science⁴
... more than 300 clinical trial publications⁴
... more than 180 open label extension publications⁴

For Healthcare Professionals Use Only. Adverse event should be reported to AbbVie pharmacovigilance team at drug safety@AbbVie.com.

AbbVie Limited
Unit 2405 - 08, 24/F, AIA Tower, 183 Electric Road, North Point, Hong Kong Tel: 3467 8888 Fax: 2219 7397
Overview of Biologics in Juvenile Idiopathic Arthritis

Dr Assunta Chi-hang HO
MBChB, MRCPCH, FHKCPaed, FHKAM
Vice President, Hong Kong Society for Paediatric Rheumatology

INTRODUCTION

Up until the past two decades, conventional disease-modifying anti-rheumatic agents (cDMARDs) had been the cornerstone treatment for patients with Juvenile Idiopathic Arthritis (JIA). With their long track record and good safety profile, cDMARDs have remained important even in the present day. However, cDMARDs are not always effective. About 10 to 30% of patients would be refractory to these drugs, especially those with the polyarticular course (pcJIA). The roles of cDMARDs are even more limited in systemic arthritis (SJIA) and the axial involvement in enthesitis-related arthritis (ERA).

Since the beginning of the new millennium, there has been a big leap in the translation of the knowledge on the underlying inflammatory mechanism to the development of new therapeutic agents. These drugs, termed biologic DMARDs (bDMARDs), are highly effective, bringing the much-needed relief to many of the children suffering from JIA.

WHAT ARE “BIOLOGICS”?

Biologics are chemicals produced by the molecular method, sometimes derivatives of a living organism. They target several pro-inflammatory cytokines and pathways that mediate the progression of arthritis, namely tumour necrosis factor, interleukin 6, interleukin 1 and T cell co-stimulation. They are usually indicated in patients with persistently active disease or not tolerating cDMARDs.

TUMOUR NECROSIS FACTOR INHIBITORS (TNF INHIBITORS, ANTI-TNF)

Anti-TNF was the very first biological product licenced for use in inflammatory arthritis 20 years ago. Nowadays, among the many preparations available, etanercept and adalimumab are the two approved for use in JIA. According to a UK biologic registry, TNF inhibitors are the most frequently prescribed bDMARDs in JIA.

Etanercept is a dimeric fusion protein that functions as a soluble TNF receptor, preventing the binding of the cytokine to its membrane bound receptor. It has been shown to be effective in pcJIA patients who were refractory to NSAIDs and methotrexate. In a randomised withdrawal trial, use of etanercept was associated with a significantly lower risk of arthritis flare as compared to the placebo arm. Efficacy of etanercept in other subtypes, namely oligoarticular, ERA and psoriatic arthritis (PsA), has also been confirmed.

Adalimumab is a fully humanised monoclonal antibody against TNF. In pcJIA patients refractory to cDMARDs including methotrexate, it was demonstrated that the use of adalimumab led to significantly fewer arthritis flares. The use of adalimumab in persistently active ERA was subsequently assessed in a randomised controlled trial, which showed a significant reduction in the number of active joints in the treatment arm.

Indication

Etanercept and adalimumab are indicated for use in pcJIA (≥ 2 years of age), ERA (etanercept ≥ 12 years of age, adalimumab ≥ 6 years of age) and PsA (etanercept ≥ 6 years of age). For patients with concomitant inflammatory bowel disease or JIA-associated uveitis, adalimumab is preferred as there has been some concern over the possible role of etanercept in flares of these extra-articular manifestations.

Side Effects

Common side effects include injection site reactions and minor infections. The use is also associated with opportunistic infection and increased risk of severe infection. Other potential adverse effects reported include demyelination and autoimmunity.

T CELL CO-STIMULATION INHIBITOR

Abatacept is a T cell co-stimulation modulator. It prevents the binding of T cell onto the CD 80 and 86 ligands of the antigen-presenting cell, thereby interfering the subsequent inflammatory cascade. A trial published in 2008 has confirmed the effectiveness of abatacept in JIA patients aged 6 years or older.

Abatacept serves as an option for pcJIA children who do not respond adequately to, or not tolerating, TNF inhibitors.

Indication

Abatacept is approved in pcJIA aged six years or above who fail to respond to DMARDs, including anti-TNF.
Side Effects

The side effect profile is similar to other biologics, including local injection reaction (if it is administered via subcutaneous route) and minor infection. Again, the concern for severe and opportunistic infection warrants careful screening and monitoring.

ANTI-INTERLEUKIN 6 INHIBITOR (IL 6 INHIBITOR, ANTI-IL 6)

Tocilizumab is a humanised monoclonal antibody against IL 6. Studies have confirmed the efficacy of tocilizumab in both pcJIA and SJIA. For pcJIA, the use of tocilizumab is associated with a significantly lower chance of arthritis flares. In SJIA, IL 6 is pivotal in the inflammatory process and is responsible for symptoms such as fever, arthritis and thrombocytosis. Therapeutic intervention using tocilizumab offers satisfactory control for both systemic and arthritic manifestations.

Indication

Tocilizumab can be used in SJIA and pcJIA who are aged two years or above if the disease is refractory.

Side Effects

In general, most of the side effects are mild, such as local injection reaction and minor infection. It can also cause other adverse effects e.g. cytopenia (neutropenia and thrombocytopenia), raised transaminases, and hyperlipidaemia. Patient-based screening and close surveillance should be carefully performed before and during treatment.

INTERLEUKIN 1 INHIBITOR (IL 1 INHIBITORS, ANTI-IL 1)

SJIA is a unique entity, characterised by marked systemic inflammation and the propensity to develop into Macrophage Activation Syndrome (MAS), a hyperinflammatory state. The pro-inflammatory cytokines IL 6 and IL 1 family are involved in the pathogenesis. Like tocilizumab, IL 1 blockade results in significant symptom improvement in SJIA. Furthermore, there is increasing evidence to support that a window of opportunity does exist. In other words, early target treatment may prevent the subsequent onset of arthritis, which is often difficult to treat.

Anakinra, an IL 1 receptor antagonist, has been widely used in the U.S. and European countries. Recent studies demonstrated that, when used as first-line monotherapy, many could achieve a long-lasting remission, even without using any corticosteroids.

Canakinumab is a long-acting monoclonal antibody against IL 1β. Patients using this drug demonstrated good response and were much less likely to experience disease flare.

Indication

Canakinumab is approved for SJIA patients aged two years or above. Anakinra is approved in European countries by the European Medicines Agency (EMA).

Side Effects

From post-marketing data, the side effect profile of both anti-IL 1 is similar to other biologics. Even though IL 1 and IL 6 inhibitors are effective in managing SJIA, MAS is still observed among those receiving these drugs. Furthermore, the presentations of a MAS episode may be altered.

SAFETY CONCERN: INFECTION

Emergence of infection is a genuine concern. The risk is further augmented as many of these patients would have exposed to other DMARDs and glucocorticoid. Findings of different nation-wide registries suggested that JIA patients receiving biologics are at an increased risk of severe infections. In a recent multinational pharmacovigilance initiative, about 17% of infections were adjudicated as opportunistic. Varicella-zoster, tuberculosis (TB), papilloma, candida and pneumocystis are among the list.

TB reactivation is of particular concern as TNF is one of the key cytokines in intracellular killing of Mycobacterium species and in granuloma formation. Screening for latent TB should be performed and treated prior to biologic therapy.

In adult RA patients, biologics are associated with reactivation of hepatitis B or C infection. With the well-established HBV vaccination programme, the incidence of hepatitis B in children is low. Nevertheless, it is still recommended to screen for carrier state before treatment begins.

Patients should be offered appropriate advice on vaccination, e.g. if they need catch-up pneumococcal vaccine, the seasonal influenza vaccine, as well as to follow the local vaccination guidelines. Live vaccine should not be given while receiving bDMARDs.

SAFETY CONCERN: MALIGNANCY

The concern for incidental malignancy stemmed after FDA issued a box warning in 2008 regarding the development of malignancies in children receiving TNF inhibitors. With more long term information now available, it is reassuring that no strong association with malignancy has been found.

One thing worth mentioning is that most of the long-term safety data were derived from anti-TNF. Nevertheless, post-marketing data and real-life experiences of other biologics suggest the safety profiles are comparable. International collaborations are of utmost importance in ongoing data collection.
TAKING CARE OF CHILDREN USING bDMARDs

The use of bDMARDs is becoming more often in children. Healthcare workers of different disciplines may be involved in caring for them. Here is a summary of the suggested care before and during bDMARDs treatment.

Screening Before Starting bDMARDs

- Efforts should be made to screen for pre-existing infections or any active infection, including latent tuberculosis and hepatitis B or C carrier state.
- Efforts should also be made to screen for any systemic conditions that render using bDMARDs contraindicated. Examples include immunodeficiency states, history of demyelinating diseases, low functional status, congestive heart failure of grade 3 or 4 of the New York Heart Association. Raised transaminase of ≥ 1.5 times of baseline and cytopenia, especially neutropenia and thrombocytopenia, are also considered contraindications for starting anti-IL 6.

Monitoring While Receiving bDMARDs

- Conscientious general care should be given, including injection site inspection, early assessment during infection or febrile illnesses, withholding bDMARDs and prompt referral if necessary. Appropriate advice on vaccination should be offered.
- Meticulous physical examination is a must. Further investigation may be required according to individual risk profiles.
- Regular blood tests are part of standard of care, including complete blood count with differentials, renal and liver functions and others as appropriate (e.g. lipid profile while using IL 6 inhibitors).

CONCLUSION

We see in the past few decades an explosion in promising treatment options for JIA. Drugs in the pipeline are ever-increasing. For example, Tofacitinib, a Janus Kinase Inhibitor, is recently approved by the FDA in treating pcJIA. Hopefully, the lives of JIA patients would be much brighter than ever.

Table 1: Summary of bDMARDs in JIA / Adapted from US Food and Drug Administration. http://www.accessdata.fda.gov and summarised by author.

<table>
<thead>
<tr>
<th>bDMARDs</th>
<th>Class</th>
<th>Indication*</th>
<th>Dose and frequency#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etanercept</td>
<td>Dimeric fusion protein that functions as soluble TNFα receptor</td>
<td>pcJIA ≥ 2 years ERA or PsA ≥ 12 years</td>
<td>0.8 mg/kg/dose sc weekly (max 50mg/dose), or 0.4 mg/kg/dose sc twice weekly (max 25mg/dose)</td>
</tr>
<tr>
<td>Adalimumab</td>
<td>Fully humanised anti TNF α monoclonal antibody</td>
<td>pcJIA ≥ 2 years ERA ≥ 6 years</td>
<td>10 to < 15 kg: 10 mg sc q2weeks 15 to < 30 kg: 20 mg sc q2weeks ≥ 30 kg: 40 mg sc q2weeks</td>
</tr>
<tr>
<td>Abatacept</td>
<td>T cell co-stimulation inhibitor</td>
<td>pcJIA ≥ 6 years</td>
<td>Intradavenous: < 75 kg: 10 mg/kg/dose 75-100 kg: 750 mg/dose > 100 kg: 1g/dose At day 0, 14 and 29, then q1weeks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Subcutaneous: 10 to < 25 kg: 50 mg weekly 25 to < 50 kg: 87.5 mg weekly ≥ 50 kg: 125 mg weekly</td>
</tr>
<tr>
<td>Tocilizumab</td>
<td>Anti IL 6 monoclonal antibody</td>
<td>pcJIA, SJIA ≥ 2 years</td>
<td>Intradavenous: < 30 kg: 10 mg/kg/dose 30-60 kg: 8 mg/kg/dose ≥ 60 kg: 16 mg q4weeks Subcutaneous: < 30 kg: 162 mg q3weeks ≥ 30 kg: 162 mg q2weeks</td>
</tr>
<tr>
<td>Anakinra</td>
<td>Recombinant IL 1 receptor antagonist</td>
<td>SJIA ≥ 8 months, weight at least 10kg (EMA recommendations)</td>
<td>< 50 kg: start at 1-2 mg/kg/dose sc daily ≥ 50 kg: 100 mg sc daily</td>
</tr>
<tr>
<td>Canakinumab</td>
<td>Humanised anti IL 1B monoclonal antibody</td>
<td>SJIA ≥ 2 years</td>
<td>≥ 7.5kg: 4mg/kg/dose sc q4weeks (max 300mg)</td>
</tr>
</tbody>
</table>

*persistently active disease despite adequate use of cDMARDs, or signs of cDMARDs intolerance
dose adjustment may be required according to individual’s characteristics
pcJIA: polyarticular course JIA. ERA: enthesitis-related arthritis, SJIA: systemic onset JIA. EMA: European Medicines Agency

References

INTRODUCTION

Vasculitis is defined as inflammation of the blood vessels with infiltration of vessel walls by granulocytes or mononuclear cells. Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a rare autoimmune condition that affects small-sized vessels (i.e. arterioles, capillaries, intraparenchymal arteries, venules and some veins) predominantly. AAVs include three disease phenotypes: granulomatosis with polyangiitis (GPA; formerly known as Wegener’s granulomatosis), microscopic polyangiitis (MPA), and eosinophilic granulomatosis with polyangiitis (EGPA; formerly known as Churg-Strauss syndrome). Patients with EGPA carry distinct clinical phenotype and disease course. It is extremely rare in the paediatric population. This article, therefore, focuses more on MPA and GPA and has reviewed briefly on the presentation and treatment of EGPA.

CLASSIFICATION CRITERIA

In 1990, the American College of Rheumatology (ACR) published criteria for the classification of seven most prevalent forms (adult-onset) of systemic vasculitis, including GPA and EGPA. At that point in time, MPA was not a well-known condition and was not included within the criteria. The ACR criteria, therefore, offer limited value in differentiating GPA from MPA. Along with the advances in the understanding of ANCA and with more widespread use of the latest diagnostic and imaging techniques, a multidisciplinary group of clinicians and pathologists was called, and an international conference, the Chapel Hill Consensus Conference (CHCC) was convened in North Carolina in 1994 focusing on the goals of reaching consensus on the names for a few common systemic vasculitides and of redefining vasculitis syndromes by the size of predominantly affected vessels as the basis of classification. In 2008, the Paediatric Rheumatology International Trials Organization (PRINTO) validated the EULAR-endorsed criteria and provided definitions for the classification criteria of four of the paediatric vasculitides, among which, GPA was the only vasculitis among the AAVs that was defined. (Table 1) The EULAR/PRINTO/PReS joint criteria have improved the sensitivity of detecting paediatric GPA to 93% (from 83% by ACR criteria for GPA). In recent years, there have been attempts at reclassifying AAV according to ANCA serotype instead of phenotype. These attempts were driven by the increasing evidence of a stronger correlation between genetic polymorphisms with ANCA serotypes than with the clinical phenotypes of GPA and MPA.

Table 1. EULAR/PRINTO/PReS criteria for granulomatosis with polyangiitis (GPA, Wegener’s).

A patient is said to have GPA when three of the following six criteria are present:

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Descriptors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper airway involvement</td>
<td>Chronic purulent or bloody nasal discharge, or recurrent epistaxis/crusts/granulomata</td>
</tr>
<tr>
<td>Naseal septal perforation or saddle-nose deformity</td>
<td>Chronic or recurrent sinus inflammation</td>
</tr>
<tr>
<td>Pulmonary involvement</td>
<td>Chest X-ray or CT scan showing the presence of nodules, cavities, or fixed infiltrates.</td>
</tr>
<tr>
<td>Renal involvement</td>
<td>Proteinuria > 0.3 g/24 hours or greater than 30mmol/mg of urine albumin/creatinine ratio on a spot morning sample</td>
</tr>
<tr>
<td>Hematuria or red blood cell casts: > 5 red blood cell casts in urinary sediment or > 3+ on the dipstick.</td>
<td></td>
</tr>
<tr>
<td>Necrotising pauci-immune glomerulonephritis area of artery or in perivascular or extravascular area of artery or arteriole</td>
<td></td>
</tr>
<tr>
<td>Granulomatous inflammation</td>
<td>Granulomatous inflammation within the wall of artery or in perivascular or extravascular area of artery or arteriole</td>
</tr>
<tr>
<td>Laryngo trachea bronchial stenosis</td>
<td>Subglottic, tracheal, or bronchial stenosis</td>
</tr>
</tbody>
</table>

ANCA ANCA positivity by immunofluorescence of by ELISA (MPO/p or PR3/c ANCA)

EULAR, European League Against Rheumatism; GPA, Granulomatosis with polyangiitis; PRINTO, Pediatric Rheumatology International Trials Organization; PReS, Pediatric Rheumatology European Society.
PATHOGENESIS

In the past two decades, benchtop experiments have established the pathogenic role of ANCA in AAV. Both environmental and genetic factors are found to be contributory to the onset of the autoimmunity. The targeted antigens by ANCA in AAV are MPO and PR3. They are cytoplasmic antigens situated within the granules of neutrophils. After priming by the external factors such as infections, environmental exposure to a toxic substance such as silica, or other factors causing disturbance of the innate or adaptive immunity, the primed neutrophils will display the target antigens (MPO or PR3) on their surface membranes. The binding of circulating ANCA to the surface antigens would then end in excessive activation of neutrophils, which then become more adhesive to endothelial cells of the vascular wall. At the identical time, the release of reactive oxygen species (ROS) and lytic enzymes from the ‘excited’ neutrophils will directly cause damage to the endothelial cells. A NETosis process (an extrusion of the neutrophil extracellular traps, NETs) was also found to be a key player within the self-perpetuating cycle of ANCA-neutrophil excitation. Neutrophil extracellular traps (NETs) are formed by the release of chromatin and granular contents to the extracellular space. The NETs can cause vascular endothelial cell injuries directly. Concomitantly, their components, including PR3 and MPO, are recognised by dendritic cells, and subsequently T cells and plasma cells, which then results in a regeneration of neutrophil hyper-activation, inflammation and vasculitis.

Alternative complement pathway activation is also believed to be involved in the autoimmune activity. During active disease, an increase in the anti-angiogenic factors sFlt1 (soluble fms-like tyrosine kinase 1) can be observed in patients with PR3-AAV. C5a is found to be a significant driver of sFlt1 release by the monocytes. Animal models have also confirmed the role of C5a/C5aR interactions in the pathogenesis of MPO-ANCA GN.

A genetic contribution to AAV has been extensively studied. Recent genome-wide studies have confirmed the presence of single nucleotide polymorphisms in HLA-DPB region on chromosome 6 of patients with PR3-AAV. A weaker association of HLA-DQ polymorphism with MPO-AAV was also found. There have also been observed associations of genetic variants within SERPINA1, PRTN3 with PR3-AAV and CTLA4 with MPO-AAV respectively. These observations support a strong genetic background of AAV.

CLINICAL FEATURES

AAV is a systemic disease involving different organs and systems. The Birmingham Vasculitis Activity Score (BVAS v. 3) and the paediatric version modified from BVAS (PVAS) summarises the systems that can be involved in any kind of systemic vasculitis. Not uncommonly, patients with AAV present with constitutional symptoms including fatigue, weight loss and fever at disease onset. The triad of upper and lower respiratory tract inflammation and renal disease is characteristic of childhood GPA and MPA. Patients with GPA, especially those with positive PR3-ANCA, are more prone to destructive lesions in the upper airway. These patients may suffer from destructive sinusitis, which can result in saddle-nose or nasal septum deformity. Cavitating and nodular lung lesions on CXR or CT thorax are more common in GPA or AAV with positive PR3-ANCA, in contrast to MPA patients who usually demonstrate patchy infiltrations or fibrosing lesions as the pulmonary manifestations. In patients with EGPA, a history of asthma or wheezing attack and eosinophilic pleural effusions are the representative features in the respiratory system. Pulmonary haemorrhage is a severe complication and can be an expression of the pulmonary-renal syndrome, which is a potentially life-threatening condition complicating MPA and GPA. The kidney is the other organ that is commonly affected in both GPA and MPA but less in EGPA. The key histological feature of renal biopsy is pauci-immune, necrotising and crescentic glomerulonephritis (GN). Granulomatous inflammation may be found in renal tissues of patients with GPA and EGPA but is absent in patients with MPA. Comparing to adults, paediatric patients with AAV tend to have less myalgia and peripheral neuropathy. AAVs are often severe and potentially organ- or even life-threatening diseases. However, limited forms and localised diseases exist. For example, GPA patients can have isolated upper airway diseases with positive PR3-ANCA and histological proof of granulomatous inflammation. Patients with limited or localised diseases can be managed with less toxic immunosuppressive medications.

INVESTIGATIVE FINDINGS

As in adult patients, paediatric patients with AAV usually have positive ANCA in blood tests. Currently, a two-step approach is adopted in most laboratories. Indirect immunofluorescence (IIF) is used to screen for ANCAs. Either a perinuclear pattern (pANCA) for MPO-ANCA or a cytoplasmic pattern (cANCA) for PR3-ANCA can be found in ANCA-positive AAV patients. The IIF would then be followed by enzyme-linked immunosorbent assay (ELISA) to detect the antibodies directed explicitly against MPO or PR3. In 2017, the 1999 international consensus on testing of ANCAs in GPA and MPA was revised. It has recommended to
replace IIF with high-quality antigen-specific assays for PR3 and MPO as the laboratory technology has advanced and high-quality immunoassays have become broadly available. The categorical need for IIF is diminishing. In a pauci-immune series, PR3-ANCA are positive in 67% in patients with GPA, and MPO-ANCA are positive in 55% of patients with MPA.12 ANCA positivity is found in about 25% of paediatric EGPA patients. Other blood tests are not specific for AAV. The inflammatory markers may be elevated, but they can be normal in limited or localised diseases. Mild anaemia or thrombocytosis in active disease states are also common.

Out of the concern for commonly associated pulmonary involvement in AAV, a chest X-ray should be performed in all patients with AAV. A follow-up by a CT thorax should be ordered in case of abnormal CXR findings or if the clinical concern for lung involvement remains despite a normal CXR. Pulmonary function tests should be done, including the diffusing capacity of the lung for carbon monoxide (DLCO), in patients with suspected pulmonary haemorrhage.

TREATMENT

The treatment of AAV is structured in a sequential approach comprising remission-induction and remission-maintenance phases. The drug of choice in each phase is governed by the stage and severity of the disease and the extent of organ involvement. There is a lack of controlled trials in paediatric AAV. The treatment is, therefore, based on adult data. The Single Hub and Access point for Paediatric Rheumatology in Europe (SHARE) initiative developed consensus-based guidelines for the management of rare vasculitides in children.19 It is recommended in the guidelines that the EULAR recommendations on adult-onset AAV (2013) can be used for paediatric GPA or MPA.

The CYLCOPOS study has established a foundation for the treatment of AAV with pulse cyclophosphamide (CYC) during the induction phase.17 In recent years, studies (RITUXVAS and RAVE) have proven non-inferiority of Rituximab, an anti-CD20 monoclonal antibody and B-cell depleting agent, in comparison to CYC in inducing remission in AAV patients.18-20 The option of Rituximab should be offered as the first-line treatment in patients when CYC is contraindicated or not preferred by patients and their families. RTX is also found to be a successful agent in inducing remission of relapsing disease (RITAZAREM).21 Systemic steroid is the cornerstone of therapy in the induction phase. In severe disease, patients may be started first on intravenous pulse methylprednisolone. Regarding the remission-maintenance phase, azathioprine poses the strongest evidence as an effective agent.22 The alternative choices are methotrexate (MTX), mycophenolate mofetil (MMF) and leflunomide (LEF). The MAINRITSAN studies have found that RTX is superior to AZA in maintaining remission after patients have successfully been induced into remission by either CYC or RTX.23-25 The results are especially promising in patients with positive PR3-ANCA, who are more prone to relapsing disease. On the other hand, BEVAS trial on another biologic, the belimumab, a human IgG1γ monoclonal antibody directed against soluble B lymphocyte stimulator (BlyS), is found to be not useful in reducing the risk of relapse of GPA or MPA when it was used as an adjunctive therapy during the maintenance phase.26

There is no strong evidence regarding the use of plasmapheresis in AAV. The PEXIVAS study on patients with severe AAV, defined by eGFR < 50 ml/min/1.73m² BSA or diffuse pulmonary haemorrhage, did not show a beneficial effect of plasmapheresis in terms of reduction of incidence of death or end-stage renal disease after a follow-up for seven years.27 Patients with AAV often required high dose and prolonged steroid therapy. In view of the concern for toxicity and complications of steroid treatment, studies on adopting

Table 2. Similarities and differences between the three ANCA-associated vasculitides.

<table>
<thead>
<tr>
<th>Clinical features</th>
<th>Microscopic polyangiitis (MPA)</th>
<th>Granulomatosis with polyangiitis (GPA)</th>
<th>Eosinophilic granulomatosis with polyangiitis (EGPA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENT</td>
<td>Not destructive, not granulomatous</td>
<td>Frequent: destructive sinusitis, saddle-nose deformity, nasal septum deformity, crusting rhinitis, otitis media</td>
<td>Not destructive, allergic rhinitis, sinus polyposis</td>
</tr>
<tr>
<td>Lung</td>
<td>Fibrosing lesions, alveolar haemorrhage</td>
<td>Cavitating lesions, lung nodules, bronchial and/or subglottic stenosis, alveolar haemorrhage</td>
<td>Eosinophilic pleural effusions, transient patchy infiltration</td>
</tr>
<tr>
<td>Asthma</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Kidney involvement</td>
<td>Very frequent, necrotising glomerulonephritis, more fibrosis and C3 deposition, no granuloma in histology</td>
<td>Frequent, necrotising glomerulonephritis, granuloma may be found in histology</td>
<td>Not frequent, necrotising glomerulonephritis, granuloma including eosinophils may be found in histology</td>
</tr>
<tr>
<td>Peripheral neuropathy (Mononeuritis multiplex)</td>
<td>Possible</td>
<td>Possible</td>
<td>Frequent</td>
</tr>
<tr>
<td>Chest X-ray +/- CT thorax +/- CT sinus</td>
<td>For alveolar haemorrhage (ground-glass opacities)</td>
<td>For alveolar haemorrhage (ground-glass opacities), lung nodules, cavities, subglottic and/or bronchial stenosis. CT for erosive sinusitis, pseudotumor</td>
<td>For transient lung infiltrates, CT for non-erosive sinusitis, polyps</td>
</tr>
<tr>
<td>ANCA</td>
<td>> 50%, Mainly MPO-ANCA</td>
<td>> 80%, Mainly PR3-ANCA</td>
<td>20-30%, Mainly MPO-ANCA</td>
</tr>
</tbody>
</table>

ENT, ear, nose, throat; C3, complement 3; CT, computerised tomography; ANCA, anti-neutrophil cytoplasmic antibodies; MPO, myeloperoxidase; PR3, proteinase 3
low-dose steroid regimen (LoVAS and TAPIR)\(^{26,29}\) and a phase III trial on replacing steroid with a CsA
target antagonist are on-going with the hope of generating a new era of minimal-steroid AAV treatment strategy.\(^{30}\)

The EGPA treatment recommendations are less robust due to the lack of randomised trials. The treatment is often inferred from GPA/MPA trials. Unique to EGPA treatment of AAV is the potential role of interleukin-5 (IL-5) blockade, which reduces blood and airway eosinophils. Wechsler et al. performed an RCT on the use of Mepolizumab and found that the treatment group achieved more accrued weeks of remission at 52 weeks and a higher percentage of patients in remission at weeks 36 and 48 after randomisation.\(^{31}\) When clinical benefit was defined post-hoc, close to 90% of patients with EGPA experienced benefit from Mepolizumab.\(^{32}\)

OUTCOME

The largest paediatric AAV cohort to date, the ARChiVe (A Registry for Childhood Vasculitis: e-entry), evaluated the early outcomes of 105 children with AAV.\(^{33}\) The study has found that 42% of the patients achieved remission (defined as PVAS of 0 on <0.2 mg/kg/day prednisone or equivalent) at 12 months, and 61% had inactive disease at 12 months. In the same cohort, despite treatment, 63% of patients experienced damage to various organ systems by 12 months which is early in their disease course. The outcome remains favourable despite the advance of diagnosis and treatment of AAV in both adult and children.

CONCLUSION

Significant progress has been made in our understanding of pathogenesis, diagnosis and medical treatment of AAV. However, there remain a lot of unanswered questions, especially in paediatric patients, where RCT data are lacking. In view of the rarity of this disease, the inclusion of children in adult studies may be considered. Systemic vasculitis, including AAV, is a complex disease with high mortality and morbidity due to the disease itself and its treatment. A multidisciplinary approach in managing AAV is of paramount importance in achieving better control of the disease and of organ damage, as well as in minimising the impact on the quality of life of these young patients.

References

ROOM RENTAL PROMOTION
Book now & get FREE 2 hours

FMSHK Member Societies are offered 2 hours FREE rental exclusively.
(Applicable to societies who haven’t used the rental service before)

Suitable for Meeting / Seminar / Press Conference / Personal Gathering

Well Equipped for Rental:
Sound system : microphones / Notebook with LCD projector / 42" TV / Broadband Internet & wifi / Refreshment Ordering, Drinks Ordering / Printing & Photocopy Services

Multi Function Room I
Lecture Hall
Council Chamber

Location: 4/F., Duke of Windsor Social Service Building, 15 Hennessy Road, Wan Chai, Hong Kong

For enquiry and booking, please contact the Secretariat at 2527 8898. http://www.fmshk.org/rental
Application for Booking Meeting Rooms and Facilities

Name of Applicant: ___________________________ Position Held: _________________

(in block letters)

Organization: __

(in full name)

Address: __

Tel: __________________ Fax: __________________

Category of Hirer (Please tick):
- Member of the Federation of Medical Societies of Hong Kong
- Non-Member of the Federation of Medical Societies of Hong Kong

Purpose for Room Reservation: ___

<table>
<thead>
<tr>
<th>Venue</th>
<th>Date</th>
<th>Time</th>
<th>FOR OFFICIAL USE ONLY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>From</td>
<td>To</td>
</tr>
<tr>
<td>Multifunction Room I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(15 persons)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Council Chamber</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(20 persons)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture Hall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(100 persons)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Date</th>
<th>Time</th>
<th>FOR OFFICIAL USE ONLY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>From</td>
<td>To</td>
</tr>
<tr>
<td>LCD Projector (with Screen)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microphone system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laser-pointer</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Amount: ____________

Date __________________ Signature __________________ Company Chop __________________
Overview of Childhood-onset Systemic Lupus Erythematosus

Dr Winnie Kwai-yu CHAN
MBBS, FRCPCH, FHKCPaed, FHKAM
President, Hong Kong Society for Paediatric Rheumatology

INTRODUCTION

Systemic lupus erythematosus is a prototype of autoimmune disease affecting any organ in the body. It is a disease in which chronic inflammation, antibody production and complement immune-complex deposition cause tissue damage and organ failure. Childhood-onset systemic lupus erythematosus (cSLE) is fundamentally the same disease as the adult counterpart (aSLE); however, they differ in several aspects, including the severity of disease and long-term prognosis.

EPIDEMIOLOGY

Ten to twenty percent of all SLE patients developed the disease during childhood. The peak age of childhood presentation is 12-13 years of age. It is rare before five years old. World-widely the prevalence is around 1.9-25.7 per 100,000 children and the incidence varies between 0.36-2.5 per 100,000 children-years. Asian, African, indigenous North American and Hispanic ancestry are more frequently affected than those of the European origin.

PATHOGENESIS

The aetiology of SLE remains unknown. Like many other autoimmune diseases, the interactions of genetic, immunologic and environmental factors play the pivotal roles in the pathogenesis. Along with the advances in Genome-Wide Association Studies (GWAS), several common alleles which may increase the risk of lupus development have been identified in adult patients. More than 30 genes causing a monogenic form of childhood-onset SLE have also been described. These genetic defects are rare. These genetic defects mainly involve the complement systems, interferon pathway, and abnormal B cell development.

CLINICAL PRESENTATION

The clinical presentations of cSLE are diverse. Systemic features such as pyrexia of unknown origin, weight loss and fatigue are common. The typical malar rash may not be present, and the dermatological features may be subtle. Haematological disease, neuropsychiatric SLE (NPSLE), nephritis, seizures and lymphadenopathy are more common in cSLE than in aSLE. Childhood-onset SLE tends to be more severe at presentation and more likely to involve the kidneys and central nervous system than aSLE. The former is more likely to have an abrupt onset and aggressive course.

Hematological abnormalities including anaemia, leucopenia, lymphopenia and thrombocytopenia are common. These patients may present as isolated immune-mediated thrombocytopenia (ITP) or autoimmune haemolytic anaemia (AIHA) months to years before the disease evolves into frank lupus. Regular monitoring of the serological markers, the complements, and other organ involvement may help to reveal the ultimate diagnosis.

Lupus nephritis and NPSLE may be the first clinical presentations in cSLE without any musculoscutaneous hint. Lupus nephritis is classified similarly to its adult counterpart. The severe forms of lupus nephritis, ISN/RPS (2004) class III or IV are a common histological finding, and affected children usually present clinically as nephrotic syndrome. Recurrent relapse of lupus nephritis is one of the significant risk factors for progressive renal failure in lupus patients.

Neuropsychiatric symptoms in cSLE are diverse and more challenging to diagnose. The prevalence of NPSLE may be underestimated as features like mood changes, headache, and cognitive impairment may be too subtle to diagnose and differentiate from drug effect.

It has been estimated that around 10% of cSLE present with non-classical manifestations which mainly affect the pulmonary, gastrointestinal and cardiac systems. These presentations can be life-threatening. These patients may not fulfill the diagnostic criteria of American College of Rheumatology (ACR) at its presentation, and appropriate treatment may be delayed if clinicians failed to aware of the diagnosis.

DIAGNOSIS

There are three diagnostic criteria for systemic lupus erythematosus. The first one was established by the American College of Rheumatology (ACR), and was last revised in 1997, followed by the Systemic Lupus International Collaborating Clinic (SLICC) group classification criteria published in 2012 and the most recent European League Against Rheumatism (EULAR) criteria established in 2019 for aSLE. These criteria help make the diagnosis; however, in children, a single manifestation may predominate in the early course of the disease before additional features that meet the diagnostic criteria are revealed. The SLICC criteria have been validated for cSLE and carry a higher sensitivity and lower specificity than the ACR criteria.
TREATMENT

Studies in cSLE are generally non-randomised. Most recommendations have been extrapolated from the results of clinical trials in the adult populations and consensus from experts. In general, corticosteroid is the mainstay of treatment. In severe disease, pulse methylprednisolone at 10-30 mg/kg (maximum 1,000 mg/dose) intravenously daily for 3-5 doses followed by oral prednisolone at 1-2 mg/kg/day (maximum 60 mg daily) according to the severity of organ involvement. Equivalent dose of alternative preparation of corticosteroid such as dexamethasone, which offers better oral absorption and CNS penetration than prednisolone, can be considered in some patients. Some authors preferred to use weekly pulse methylprednisolone while keeping a medium-to-low dose oral prednisolone at 10-20 mg daily during the methylprednisolone while keeping a medium-to-low dose oral prednisolone at 10-20 mg daily during the acute phase11,12 as pulse methylprednisolone, but not the usual-dose prednisolone, has been shown to eliminate the interferon-alpha gene expression signature in SLE13. However, it is not clear whether this practice will improve patients’ outcomes. There is no absolute rule on steroid tapering. In general, one can reduce 10-20\% of the dose in a 1-2 weekly interval based on clinical improvement. Steroid complications are well-known. The cushingoid appearance and striae are of significant concerns to teenage girls.

For decades, cyclophosphamide, given either as an infusion or oral form, has been used as adjuvant therapy in severe lupus disease. Before the NIH IV, cyclophosphamide protocol, oral cyclophosphamide at 2-3 mg/kg (maximum 100 mg) daily for 12 weeks is a common regimen for treatment of lupus nephritis in children8. The NIH infusion protocol using a high dose at 500-1,000 mg/m2 monthly for six doses as induction11,12 offers the advantage of providing better hydration and allows the use of Mesna to minimise cyclophosphamide-induced haemorrhage cystitis. The infusion route may help to ensure drug compliance. In the recent decade, the Euro-Lupus Nephritis Trial using a lower standard dose of cyclophosphamide at 500 mg infusion once every two weeks for six doses showed equal effectiveness and less serious complication14. Gonadotoxicity of cyclophosphamide is a major concern in young patients. GnRH analogue, like triptorelin, can be given before or after the dose of IV cyclophosphamide as an ovarian protection agent15. Sperm cryopreservation for future assisted reproductive technologies in post-pubertal males could be considered before cyclophosphamide therapy. However, in life- or organ-threatening scenarios, the window for reproductive intervention is narrow.

Mycophenolic acid (MPA), a reversible inhibitor of inosine monophosphate dehydrogenase (IMPDH), is an alternative to cyclophosphamide to treat moderate to severe lupus disease in paediatrics. It is a favourable option when there are concerns on future malignancies, infertility and other severe cyclophosphamide complications. Studies in adults have shown that mycophenolate mofetil (MMF) showed a non-inferior efficacy as compared with cyclophosphamide in the control of severe lupus nephritis16. MMF is usually given at a dose of 600 mg/m2 per oral twice daily, not to exceed 1 gm per day in most Asian adult patients, however, children can tolerate a higher dose as compared with the adult counterpart11,12,17. Side effects include gastrointestinal symptoms, cytopenia, hypogammaglobulinemia, opportunistic infections and teratogenicity. Mycophenolate sodium is the enteric-coated salt form of MPA and may have fewer gastrointestinal side effects. Clinicians have to be aware of the dosage difference between these two preparations. As most active lupus patients are female at reproductive ages, advice on contraception and possible teratogenicity of MPA should be provided.

Rituximab (RTX) is an anti-CD 20 monoclonal antibody targeting on B cells, but not plasma cells. It is licensed for adult rheumatoid arthritis, granulomatosis with polyangiitis (GPA) and microscopic polyangiitis (MPA). Nevertheless, it is commonly used as rescue therapy in SLE patients resistant to usual treatment. A recent systematic review on the efficacy and safety of Rituximab in paediatric SLE showed that most literature data available are reports on case series18. There is acceptable evidence to suggest that Rituximab may improve the renal, neuropsychiatric and haematological disease of cSLE and may offer a steroid-sparing effect. The overall safety profile was acceptable in children15. The doses and duration of Rituximab vary. The most common regimen is RTX at 375 mg/m2/week. The number of doses per course varies from 2 to 4, and the number of courses ranges from 1 to 12. RTX at 750 mg/m2 (maximum 1 gm) given as two doses 14 days apart is also a common practice. Rituximab administration may result in severe infusion reactions, and hepatitis B reactivation; hence a careful selection of patients, screening of hepatitis status and IGRA for latent tuberculosis should be performed before its use18.

After the initial induction phase, either azathioprine at 2-3 kg (maximum 150 mg) or MMF is the drug of choice for maintenance therapy. Given the long-term gonadotoxicity of cyclophosphamide, the original NIH protocol of intravenous cyclophosphamide every three months is seldom used nowadays. Azathioprine is a purine antimetabolite. It is metabolised to 6-mercaptopurine (6-MP) after ingestion. Both thiopurine methyltransferase (TPMT) and nudix hydrolase (NUDT 15) are enzymes that metabolise azathioprine. Genotyping of TPMT and NUDT 15 helps to predict the potential toxicity of thiopurine drugs and allows dose adjustment on an individual basis.

Short-term outcome may improve with intensive immunosuppressive agents. The long-term prognosis is affected by the number of disease relapses. Nephritic relapses can occur in 35\% of initial responders and is a significant risk factor in the development of end-stage renal disease in lupus patients. Combination therapy using MPA and calcineurin inhibitors (CNI) such as cyclosporine A or tacrolimus serves as an option to induce remission and to prevent frequent relapses. However, the long-term nephrotoxicity of CNI is another concern19.

Belimumab, a fully humanised monoclonal antibody which inhabits B lymphocytes stimulator (BLYS), was approved by the FDA and European Medicines Agency for the treatment of SLE in adults with moderate disease activity. Recently the FDA also approved its
use in cSLE between 5-17 years of age. A recent phase 2 randomised placebo-controlled double-blinded study evaluating the safety of belimumab at 10 mg/kg showed that belimumab had a benefit-risk profile in cSLE that was consistent with adult studies\(^2\). However, patients with active and severe lupus nephritis, CNS lupus or using systemic prednisolone > 1.5 mg/kg/day had been excluded in this study. More data are needed to guide clinicians on the use of this new biologic.

As in the adult patient, hydroxychloroquine at a dose of 5 mg/kg with regular ophthalmological assessment is also recommended for children with SLE. Other adjuvant therapies, including oral aspirin to avoid thrombotic phenomenon, calcium and vitamin D supplement to prevent osteoporosis, appropriate vaccinations and advice on contraception are all essential management issues.

LONG TERM PROGNOSIS

Childhood-onset SLE tends to be more aggressive. The risk of organ damage is related to the number of relapses, organ involvement and the side effects of drugs, especially steroid-induced cataract, avascular necrosis of hips and growth failure\(^2\). Depression can be a manifestation of active NPSLE, the side effect of medications or the impact of lupus itself\(^2\). Depression can affect patients’ daily activity, school performance, peer relationships and treatment adherence. All these psychosocial issues should not be overlooked in long-term management.

CONCLUSION

Childhood-onset SLE is a complex and severe disease. Although there are many similarities to the adult disease, the many unique features of cSLE warrant the support of a multidisciplinary team.

References

Certificate Course in Ophthalmology 2021

Jointly organised by
- The Federation of Medical Societies of Hong Kong
- The Hong Kong Ophthalmological Society

Objectives:
This course aims to provide an overview and update on the diagnosis and management of common and important eye diseases. After attending the course, attendees will learn how to deal with common ophthalmic conditions and when to refer patients to ophthalmologists.

<table>
<thead>
<tr>
<th>Date</th>
<th>Topics</th>
<th>Speakers</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 Feb, 2021</td>
<td>Cataract and Cataract Surgery Update</td>
<td>Dr. CHAN Chung Yan, Tommy FHKAM (Ophthalmology)</td>
</tr>
<tr>
<td></td>
<td>Refractive Errors, Presbyopia and Refractive Surgeries</td>
<td></td>
</tr>
<tr>
<td>3 Mar, 2021</td>
<td>Corneal and External Eye Diseases</td>
<td>Dr. CHOI Nga Kwan, Bonnie FHKAM (Ophthalmology)</td>
</tr>
<tr>
<td></td>
<td>Glaucoma and Glaucoma Surgery Update</td>
<td>Dr. WONG Ka Wai, Jasper FHKAM (Ophthalmology)</td>
</tr>
<tr>
<td>10 Mar, 2021</td>
<td>Neuro-Ophthalmology</td>
<td>Dr. HO Wing Lau FHKAM (Ophthalmology)</td>
</tr>
<tr>
<td></td>
<td>Squint, Paediatric Ophthalmology</td>
<td>Dr. YAM Cheuk Sing, Jason FHKAM (Ophthalmology)</td>
</tr>
<tr>
<td>17 Mar, 2021</td>
<td>Update in Orbital Diseases and Oculoplastic Surgery</td>
<td>Dr. KWOK Sze Sai, Jeremy John FHKAM (Ophthalmology)</td>
</tr>
<tr>
<td></td>
<td>Red Eyes, Ocular Trauma and Emergencies</td>
<td>Dr. LEE Allie FHKAM (Ophthalmology)</td>
</tr>
<tr>
<td>24 Mar, 2021</td>
<td>Retinal Detachment and Diabetic Retinopathy</td>
<td>Dr. LUK Oi Jing, Fiona FHKAM (Ophthalmology)</td>
</tr>
<tr>
<td></td>
<td>Common Macular Diseases and Treatment</td>
<td>Dr. LAI Hiu Ping, Frank FHKAM (Ophthalmology)</td>
</tr>
<tr>
<td>31 Mar, 2021</td>
<td>Ophthalmic Imaging</td>
<td>Dr. MOHAMED Shaheeda FHKAM (Ophthalmology)</td>
</tr>
<tr>
<td></td>
<td>Use of Laser in Ophthalmology</td>
<td>Dr. SEE LEUNG Wing Yun, Joy FHKAM (Ophthalmology)</td>
</tr>
</tbody>
</table>

Date: 24 February & 3, 10, 17, 24, 31 March, 2021 (Wednesday)

Duration of session: 1.5 hours (6 sessions)

Time: 7:00 pm – 8:30 pm

Course Feature: Video lectures (with Q&A platform for participants to post the questions)

Quiz for doctors: To tie in with the CME requirements for video lectures, DOCTORS are required to complete a quiz after the completion of each lecture

Language Media: Cantonese (Supplemented with English)

Course Fee: HK$1,000 (6 sessions)

Certificate: Awarded to participants with a minimum attendance of 70% (4 out of 6 sessions)

Enquiry:
- Tel.: 2527 8898
- Fax.: 2865 0345
- Email: vienna.lam@fmshk.org

CME / CNE Accreditation in application

Online Application from website: http://www.fmshk.org
City Exploration: The Weekend Markets

Dr Karen LAU
MBBS(HKU), MRCPCH, FHKC Paed, FHKAM (Paed), DCH (International), DCH (HK)

It has been a tough time for most of us in the past year, as the pandemic has left us with quite a confined life. Yet there are still some enlightening and peaceful moments during this COVID-19 period. When the global transport and delivery services are being hindered, people start to explore more on local produce. Being a regular weekend market visitor and a market booth owner myself, I find that more and more people begin to take notice of the different types of weekend markets around the city.

These weekend markets are variably located: at the corner of a narrow street strewn with wall graffiti in Sai Ying Pun; inside cultural preserved buildings in Shek Kip Mei and Tsuen Wan; along the new hipster area in Sham Shui Po; along the seashore areas in Sai Kung and Stanley. Sometimes you can see groups of friends and families looking at small booths with interest. These are booths selling products made by mostly freelance locals. Weekend markets carry quite a long history in our city. In recent years, they have become more popular. If you are interested in handmade products, small-sized artworks, locally produced food or self-designed clothings, you can discover surprises at these places.

It may not be easy to get information about weekend markets, as some of them are of tiny scale. I would like to list out some interesting ones here, as a summary and a humble recommendation.

JCCAC (Jockey Club Creative Art Centre)
JCCAC should be the pioneer of the weekend market, and up till now, it is still one of the best quality markets selling handmade products. They hold a market every three months. Each time the market attracts lots of locals with quite a crowd!
Address: 30 Pak Tin Street, Shek Kip Mei
Website: www.jccac.org.hk

The Mills
Being a landmark revitalisation project itself, The Mills supports small local handcrafts businesses. Apart from weekend markets, The Mills also often offers some pop-up stores for a few months selling works by various talented local artists.
Address: 45 Pak Tin Par Street, Tsuen Wan
Website: www.themills.com.hk

A Nice Place To
This market is my favourite. It is located at the inner corner of Artlane in Sai Ying Pun. Two passionate youngsters have rented a two-floor shop to hold exhibitions and to organise weekend handcrafts markets. Everything is true-heartedly selected, and I always end up spending a bit too much here.
Address: 2 Chung Ching Street, Sai Ying Pun
Website: https://www.facebook.com/niceplacetoto/

Jao Tsung-I Academy
The historic building itself is impressive enough; not many people know there are frequent weekend markets being hold. It is definitely a good idea to spend a day there taking a few nice pictures and shopping around during market days.
Address: 800 Castle Peak Road, Lai Chi Kok
Website: https://www.jtia.hk/

There are simply too many places to recommend to you; our city is full of vibrancy and creativity.
<table>
<thead>
<tr>
<th>Date / Time</th>
<th>Function</th>
<th>Enquiry / Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 TUE</td>
<td>1:00 PM</td>
<td>Facebook Live HKMA-HKS&H CME Programme 2019-2020 Topic: Updates on Acute Stroke Management Organiser: Hong Kong Medical Association Hong Kong Sanatorium & Hospital; Speaker: Dr Patrick Chung-ki Lİ</td>
</tr>
<tr>
<td>4 THU</td>
<td>2:00 PM</td>
<td>Facebook Live Chronic Pain Management - Online Organiser: HKMA - Kowloon East Community Network; Speaker: Dr Timmy Chi-wing CHAN</td>
</tr>
<tr>
<td>9 TUE</td>
<td>2:00 PM</td>
<td>Facebook Live Safety & Efficacy of Corticosteroids for Asthma Treatment - Online Organiser: HKMA - Kowloon West Community Network; Speaker: Dr WONG King-ying</td>
</tr>
<tr>
<td>10 WED</td>
<td>7:30 AM</td>
<td>The Hong Kong Neurosurgical Society Monthly Academic Meeting - To be confirmed Organiser: Hong Kong Neurosurgical Society Speaker(s): Dr Ryan Pak-to YUEN; Chairman: Dr Danny Tat-ming CHAN; Venue: Conference Room, F2, Department of Neurosurgery, Queen Elizabeth Hospital; or via Zoom meeting</td>
</tr>
<tr>
<td>18 THU</td>
<td>2:00 PM</td>
<td>Facebook Live Leading the Shift in Paradigm in T2D Treatments: Cardio-Protection with Glucose-Lowering Drug - Online Organiser: HKMA-New Territories West Community Network; Speaker: Dr LAU Chun-leung</td>
</tr>
<tr>
<td>22 MON</td>
<td>7:8 PM</td>
<td>IntravenousIron: A Framework for Changing the Management of Iron Deficiency Anemia Organiser: The Federation of Medical Societies of Hong Kong; Speaker: Dr Raymond Siu-ming WONG</td>
</tr>
<tr>
<td>23 TUE</td>
<td>2:00 PM</td>
<td>Facebook Live HKMA-GHK CME Programme Topic: 1) CA lung; 2) Lung Nodules and Ground Glass Opacities; how should we manage them? Organiser: Hong Kong Medical Association Gleneagles Hong Kong Hospital; Speaker: Dr WAN Chi-kin, Dr Alan SIHOE</td>
</tr>
<tr>
<td>24 WED</td>
<td>7:00 PM</td>
<td>Certificate Course in Ophthalmology 2021 (Video Lectures) Organiser: The Federation of Medical Societies of Hong Kong</td>
</tr>
<tr>
<td>25 THU</td>
<td>2:00 PM</td>
<td>Facebook Live Hemorrhoids…..A Common Disease and Effective Treatment Options - Online Organiser: HKMA-HK East Community Network; Speaker: Dr NG Ka-kin</td>
</tr>
<tr>
<td>25 THU</td>
<td>7:00 PM</td>
<td>FMSHK Executive Committee Meeting Organiser: The Federation of Medical Societies of Hong Kong; Venue: Council Chamber, 4/F, Duke of Windsor Social Service Building, 15 Hennessy Road, Wanchai, Hong Kong</td>
</tr>
<tr>
<td>26 FRI</td>
<td>2:00 PM</td>
<td>Facebook Live Non-Surgical Treatment of Benign Thyroid Nodule - Online Organiser: HKMA-YTM Community Network; Speaker: Dr Daisy Mei-yee KAN</td>
</tr>
</tbody>
</table>
Answers to Radiology Quiz

Answers:

1. No. There is anterior dislocation of the left shoulder. Additional inferior subluxation of the left humerus is evident with the presence of abnormal surrounding soft tissue density extending into the left subacromial space (red arrows in Fig 1.)

2. No. Abnormal ill-defined mixed lytic-sclerotic permeative appearance of the left proximal humerus with a broad zone of transition is noted. Cortical irregularity and destruction is evident. Abnormal periosteal reactions are also present. The internal matrix appears amorphous and cloud-like, suggesting the presence of an osteoid matrix. No pathological fracture is evident.

3. 1. Codman triangle (yellow arrow in Fig 1.)
2. Sunburst appearance (green arrow in Fig 1.)

These types of periosteal reactions are often associated with aggressive bony lesions.

4. Aggressive bony lesions/processes in the adolescent age group include:
 1. Osteosarcoma
 2. Ewing’s sarcoma
 3. Bony metastasis
 4. Osteomyelitis (if clinical features suggest infection)

5. In this case, the likely diagnosis by plain film findings is in favour of osteosarcoma. Early referral to the Orthopaedics team with further workup is recommended.

Staging of bone malignancy involves:
- Local staging by MRI to map out the bone marrow and soft tissue involvement: and
- Distant staging by CT thorax and bone scan,

Definitive diagnosis is achieved by histopathology, prior to which the treating surgeon should be consulted to plan the biopsy track in order to reduce the chance of seeding.

Dr Leanne Han-qing CHIN
MBBS, FRCR
Certificate Course on Childhood Arthritis and Rheumatic Disease I (Video Lectures)

Objectives:
To promote the public awareness of rheumatic diseases in children and to update the recent advancement and management of this group of patients.

<table>
<thead>
<tr>
<th>Date</th>
<th>Topics</th>
<th>Speakers</th>
</tr>
</thead>
</table>
| 23 Feb, 2021 | Children with Musculoskeletal Complaint and Arthritis Mimics | Dr SY Kong
Associate Consultant, Department of Paediatrics, KWH
Hong Kong Society for Paediatric Rheumatology |
| 2 Mar, 2021 | Children with Juvenile Idiopathic Arthritis | Dr Roanna Yeung
Associate Consultant, Department of Paediatrics, QEH
Hong Kong Society for Paediatric Rheumatology |
| 9 Mar, 2021 | Living with Juvenile Idiopathic Arthritis | Dr Assunta Ho
Associate Consultant, Department of Paediatrics, PWH
Hong Kong Society for Paediatric Rheumatology |
| 16 Mar, 2021 | Cutaneous Manifestations of Paediatric Rheumatic Disease | Dr Andrea Leung
Senior Physiotherapist, Physiotherapy Department, QEH
Hong Kong Society for Paediatric Rheumatology |
| 23 Mar, 2021 | Myositis and Dermatomyositis in Children – A Distinct Entity from Adult | Dr David Luk
Consultant, Department of Paediatrics and Adolescent Medicine, UCH
Hong Kong Society for Paediatric Rheumatology |
| 30 Mar, 2021 | Medications Used in Paediatric Rheumatology | Dr Grace Chiang
Associate Consultant, Department of Paediatrics and Adolescent Medicine, AHNH
Hong Kong Society for Paediatric Rheumatology |
| | | Dr Celeste Ewig
Senior Lecturer, School of Pharmacy, the Chinese University of Hong Kong
Hong Kong Society for Paediatric Rheumatology |

Date: 23 February & 2, 9, 16, 23, 30 March, 2021 (Tuesday)
Duration of session: 1.5 hours (6 sessions)
Time: 7:00 pm – 8:30 pm
Course Feature: Video lectures (with Q&A platform for participants to post the questions)
Quiz for doctors: To tie in with the CME requirements for video lectures, DOCTORS are required to complete a quiz after the completion of each lecture
Language Media: Cantonese (Lecture 1-5) : English (Lecture 6)
Course Fee: HK$1,000 (6 sessions)
Certificate: Awarded to participants with a minimum attendance of 70% (4 out of 6 sessions)
Enquiry: The Secretariat of The Federation of Medical Societies of Hong Kong
Tel.: 2527 8898
Fax.: 2865 0345
Email: vienna.iam@fmshk.org

CME / CNE Accreditation in application
Online Application from website: http://www.fmshk.org
SPORICIDAL DISINFECTANTS
POWERED BY CHLORINE DIOXIDE, EFFECTIVE AGAINST SARS-CoV-2.

MEDICAL SURFACE DISINFECTION
Ensuring all medical surfaces receive effective disinfection is key in preventing healthcare-associated infections (HAIs).

SARS-CoV-2 has been shown to survive on inanimate surfaces for 4 to 7 days.

SPORICIDAL SURFACE DISINFECTANTS
HIGH LEVEL DISINFECTION OF MEDICAL SURFACES FOR THE PREVENTION OF OUTBREAKS IN HOSPITALS & CLINICS

JET
FOR NEAR PATIENT SURFACES SUCH AS MATTRESSES, BED RAILS, IV POLES AND PATIENT MONITORING EQUIPMENT IN A CONTACT TIME OF 1 MINUTE.

FUSE
FOR LARGE SURFACE AREAS SUCH AS FLOORS AND WALLS, IN A CONTACT TIME OF 5 MINUTES.

BROUGHT TO YOU BY TRISTEL
GET IN TOUCH FOR A DEMONSTRATION & PRODUCT INFORMATION
OFFICE/WHATSAPP: 2895 6988 • EMAIL customerservicehk@tristel.com