Nephrology

Better Care for Patients with Diabetes and Kidney Disease
THE 1ST β3-AGONIST FOR OAB* PATIENTS WITH PROMISING SAFETY PROFILE
PLACEBO-LIKE DRY MOUTH (1.7%) SIDE EFFECT1

*OAB: Overactive Bladder + LUTS: Lower Urinary Tract Symptoms
#α1-blockers are often considered the first line drug treatment of male LUTS3

Abbreviated prescribing information of Harnal OCAS® 8.4 mg Tablets
Version: 9/07 Version 7/13 Composition: Tamsulosin HCl 0.4 mg Treatment of lower urinary tract symptoms (LUTS) associated with benign prostatic hyperplasia (BPH). Design: A 12-week, double-blind, placebo-controlled trial was conducted to evaluate the efficacy and safety of the drug in patients with LUTS associated with BPH. Parameters: The primary efficacy endpoint was the change in the IPSS (International Prostate Symptom Score) from baseline to the end of treatment. Results: The change in IPSS from baseline to the end of treatment was significantly lower in the tamsulosin group compared to the placebo group. Side effects: The most common side effects were headache, fatigue, and back pain. Conclusion: Tamsulosin is an effective and well-tolerated treatment for LUTS associated with BPH.

Abbreviated prescribing information of Betmiga® prolonged release tablets
Version: 6/07 Version 7/14 Composition: Mirabegron 50 mg Tablets Treatment of overactive bladder (OAB) symptoms, Design: A 12-week, double-blind, placebo-controlled trial was conducted to evaluate the efficacy and safety of the drug in patients with OAB. Parameters: The primary efficacy endpoint was the change in the OAB Symptom Score (OABSS) from baseline to the end of treatment. Results: The change in OABSS from baseline to the end of treatment was significantly lower in the mirabegron group compared to the placebo group. Side effects: The most common side effects were urgency, frequency, and incontinence. Conclusion: Mirabegron is an effective and well-tolerated treatment for OAB.

A FRESH STEP IN LUTS+ MANAGEMENT

*OAB: Overactive Bladder + LUTS: Lower Urinary Tract Symptoms
#α1-blockers are often considered the first line drug treatment of male LUTS3

Abbreviated prescribing information of Harnal OCAS® 8.4 mg Tablets
Version: 9/07 Version 7/13 Composition: Tamsulosin HCl 0.4 mg Treatment of lower urinary tract symptoms (LUTS) associated with benign prostatic hyperplasia (BPH). Design: A 12-week, double-blind, placebo-controlled trial was conducted to evaluate the efficacy and safety of the drug in patients with LUTS associated with BPH. Parameters: The primary efficacy endpoint was the change in the IPSS (International Prostate Symptom Score) from baseline to the end of treatment. Results: The change in IPSS from baseline to the end of treatment was significantly lower in the tamsulosin group compared to the placebo group. Side effects: The most common side effects were headache, fatigue, and back pain. Conclusion: Tamsulosin is an effective and well-tolerated treatment for LUTS associated with BPH.

Abbreviated prescribing information of Betmiga® prolonged release tablets
Version: 6/07 Version 7/14 Composition: Mirabegron 50 mg Tablets Treatment of overactive bladder (OAB) symptoms, Design: A 12-week, double-blind, placebo-controlled trial was conducted to evaluate the efficacy and safety of the drug in patients with OAB. Parameters: The primary efficacy endpoint was the change in the OAB Symptom Score (OABSS) from baseline to the end of treatment. Results: The change in OABSS from baseline to the end of treatment was significantly lower in the mirabegron group compared to the placebo group. Side effects: The most common side effects were urgency, frequency, and incontinence. Conclusion: Mirabegron is an effective and well-tolerated treatment for OAB.
Contents

Editorial

- Better Care for Patients with Diabetes and Kidney Disease
 Dr LUI Siu-fai, BBS, MH, JP & Dr CHENG Yuk-lun

Medical Bulletin

- Challenges in Managing Diabetes Mellitus and Diabetic Kidney Disease in Primary Care Setting
 Dr LI Yim-chu
- Diabetes Mellitus - Who to Screen and What to Monitor for Renal Complications
 Dr AU YEUNG Yick-cheung
 CME
- MCHK CME Programme Self-assessment Questions
- Optimising the Use of Anti-Diabetic Drugs in Patients with Type 2 Diabetes
 Dr CHAU Suet-ming
- Staging of Diabetic Kidney Disease and the Clinical Action Plan
 Dr Sunny SH WONG
- Improving Diabetic Control and Kidney Protection: What You Need to Know from Dietitians’ Perspective
 Ms Cherry PY LAW
- Better Care for Patients with Diabetes and Kidney Disease
 A Road Map for Diabetes Care: From Risk Assessment to Empowerment
 Ms Veronica Siu-chan HUNG

Medical Bulletin

- Nursing Management in Diabetic Patients on Renal Replacement Therapy
 Ms HO Hau-sim
- As a Renal Transplanted Diabetic, How Did I Help Myself?
 Ms Maggie MM NG

Dermatology Quiz

- Dermatology Quiz
 Dr Lai-yin CHONG

Medical Diary of September

Calendar of Events

Society News

Disclaimer

All materials published in the Hong Kong Medical Diary represent the opinions of the authors responsible for the articles and do not reflect the official views or policy of the Federation of Medical Societies of Hong Kong, member societies or the publisher.

Publication of an advertisement in the Hong Kong Medical Diary does not constitute endorsement or approval of the product or service promoted or of any claims made by the advertisers with respect to such products or services.

The Federation of Medical Societies of Hong Kong and the Hong Kong Medical Diary assume no responsibility for any injury and/or damage to persons or property arising from any use of execution of any methods, treatments, therapy, operations, instructions, ideas contained in the printed articles. Because of rapid advances in medicine, independent verification of diagnoses, treatment method and drug dosage should be made.

The Cover Shot

天下第一城 in Beijing is an enormous and prestigious holiday resort with a golf course and surrounded by a large number of lotus ponds. It also has a memorial building containing the exhibit of the life and times of the late Chinese Vice-President of the People’s Republic of China 識毅仁.

The lotus was taken in one of the ponds along the fourways of his golf course.

Prof Richard Yue-hong YU
MD (HKU), PhD (HKU),
FRCP, FHKCP
Senior Advisor,
Hong Kong College of Physicians
Better Care for Patients with Diabetes and Kidney Disease

Dr LUI Siu-fai, BBS, MH, JP
MBChB, FHKCP, FHKAM (Medicine), FRCP (Edin, London, Glasgow)
Specialist in Nephrology
Chairman, Hong Kong Kidney Foundation

Dr CHENG Yuk-lun
MBChB, FHKCP, FHKAM (Medicine), FRCP (Edin, London)
Specialist in Nephrology
Consultant Nephrologist and Chief of Nephrology, Department of Medicine & ICU, Alice Ho Miu Ling Nethersole Hospital
Chairman, Hong Kong Society of Nephrology

Co-Editors

While attention is currently focused on COVID-19, there is another pandemic around the world, diabetes mellitus (DM), which sweeps across the Asia region more than other parts of the world. It is estimated that about 10% of the world population suffer from diabetes. Hong Kong is also facing the same problem.

We all know the implications and consequences of DM, with its morbidity and mortality, cause a major health problem for the patients. In particular, the consequences of DM and diabetic kidney disease (DKD) are very important. In Hong Kong, it was estimated that 37.7% of DM patients had diabetic nephropathy in 2018/19. The true prevalence was likely higher as 14.6% of the study population had undetermined diabetic nephropathy status. Moreover, more than half of the newly diagnosed end-stage renal disease (ESRD) patients on renal replacement therapy are caused by DM. There is a need for us to provide better care for patients with DM.

DM is a major modifiable risk factor for developing DKD. Each healthcare professional plays a slightly different role in patient management. It is important for us to move upstream to slow down the deterioration of kidney failure so that the patients won’t go to ESRD. But even more so, if we can do so, is to prevent them from getting kidney disease complications. It can be done, though it is a big challenge, by us the healthcare professionals. There is a call for collective action by everyone.

Recently there has been tremendous progress in diabetes management. New guidelines addressing diabetes management in DKD have also been published. It calls for comprehensive and structural care, and teamwork in the patient management of DM and DKD. With this in mind, Hong Kong Society of Nephrology, Hong Kong Kidney Foundation and The Federation of Medical Societies of Hong Kong have jointly organised four live webinars on ‘Better Care for Patients with Diabetes and Kidney Disease’ from Feb to April 2021. The collaborating partners are Hong Kong College of Family Physicians, Hong Kong Society of Endocrinology, Metabolism and Reproduction (Diabetes Division), Diabetes Hongkong, Hong Kong Dietitians Association, Hong Kong Society of Endocrinology, Metabolism and Reproduction (Diabetes Division), Diabetes Hongkong, Hong Kong Dietitians Association, Hong Kong Association of Renal Nurses, Association of Hong Kong Diabetes Nurses and Alliance for Renal Patients Mutual Help Association. In these webinars, the diabetologists, nephrologists, primary care physician, diabetic nurse specialist, renal nurse specialist and dietitian shared the recent guidelines, expert advice and challenges in managing renal disease in diabetes. The last webinar was also open to the public, and diabetic patients were invited to talk about self-management, connecting healthcare professionals and patients together to combat DM and DKD.

This issue of Medical Diary published some of the presentations delivered at the webinars. Dr Li Yim-chu shares the local data on diabetes and DKD and her insight into the challenges and solutions in
managing these problems in the primary care setting. Dr Au Yeung Yick-cheung discusses who would be screened and what parameters would be monitored for diabetic renal complications. Dr Chau Suet-ming gives us an update on the use of anti-diabetic drugs and emphasises the need for an individualised approach for the management of diabetic patients. Dr Sunny SH Wong highlights the current understanding of DKD staging and the clinical action plan, as well as the importance of correcting the cardiovascular risk factors. Ms Cherry PY Law, Ms Veronica SC Hung and Ms Ho Hau-sim also discuss how to improve the diabetic and renal outcomes from the perspectives of the dietitian, diabetic nurse specialist and renal nurse specialist, respectively. Last but not least, Ms Maggie MM Ng shares her story and highlights the patient engagement and self-management that are essential for optimal management.

We would like to thank the contributing authors and everyone involved in the webinars for their effort and great support. We also wish to acknowledge Professor Richard YH Yu for contributing a splendid cover picture for this issue. We sincerely hope the contents addressed will benefit the clinical practice for tackling DM and DKD.

References

2. Diabetes Mellitus Care Report 2019/20, Hospital Authority
Challenges in Managing Diabetes Mellitus and Diabetic Kidney Disease in Primary Care Setting

Dr LI Yim-chu
MBBS(HK), FHKCFP, FRACGP, FHKAM (Family Medicine)
Specialist in Family Medicine
Chief of Service, Department of Family Medicine & GOPCs
Kowloon Central Cluster, Hospital Authority
Council member, Hong Kong College of Family Physicians

DISEASE BURDEN: WORLDWIDE AND HONG KONG

Diabetes mellitus (DM) is one of the most common chronic diseases in both developed and developing countries. The global diabetes prevalence in 2019 was estimated to be 9.3% (463 million people), rising to 10.2% (578 million) by 2030 and 10.9% (700 million) by 2045.1,2 About one in two (50.1%) people living with diabetes do not know that they have diabetes. This implies around half of the people with DM in the world are not aware of having the disease, and are unknowingly at risk of developing cardiovascular and renal complications as well as other health problems. DM is the leading cause of kidney failure, blindness, leg amputations, cardiovascular diseases and stroke.3

Diabetic kidney disease (DKD) is the most common cause of the end-stage renal disease (ESRD) in the world, and it is associated with increased morbidity and mortality in diabetic patients.4 It is defined by elevated urine albumin excretion or reduced glomerular filtration rate (GFR), or both. It takes place in 20% to 40% of all diabetics.5 The incidence of DKD is increasing each year. It has been estimated that more than 40% of people with diabetes will develop chronic kidney disease (CKD), including a significant number who will develop ESRD requiring renal replacement therapies (dialysis and/or transplantation). Moreover, CKD is the most frequent first comorbidity in type 2 DM. Studies have demonstrated that CKD is the first cardiovascular/renal disease (CVRD) manifestation identified in CVRD-free patients with type 2 DM.6

The local situation of DM is comparable to that across the world. According to Population Health Survey 2014/15 carried out by the Department of Health, among persons aged 15-84, 8.4% had DM (either they had previously diagnosed DM or had DM but without a known history of the disease).7 More people were unaware of their DM (4.5%) than those who had previously diagnosed DM (3.8%). Another 1.0% of persons aged 15-84 had impaired fasting glucose (IFG).

Data of Hong Kong showed comparable findings worldwide that almost half of the new cases of ESRD were due to DM in 2016. (Fig 1)
The Role of Primary Care in Managing Diabetes

Primary care physicians play an important role in managing DM, as more than half of diabetics attend primary care services. Uncomplicated DM patients and those with the absence of recent significant DM complications could be well be managed at the primary care level. As primary care physicians, we provide patient-centred, continuing, coordinated and comprehensive care to patients, in addition to being the first point of contact in the healthcare system. As mentioned earlier, around half of the patients with diabetes are not aware of the problem, which signifies the need for early detection. Monitoring treatment responses and identification of treatment barriers could prevent and delay the development of complications. Coordinated care with other healthcare professionals such as nurses, dietitians, occupational therapists, optometrists, pharmacists and physiotherapists in a multidisciplinary care approach has also been proven to be cost effective in managing diabetes in primary care. In addition, the collaboration between primary and secondary care teams could improve coordinated care for patients. Primary care physicians can also identify high-risk subjects for referral to other experts.

Early detection and management of the renal disease are important to reduce the burden of end-stage renal failure requiring renal replacement therapy (RRT). Primary care physicians can make a timely diagnosis of DKD through regular screening of individuals with DM. Progression of DKD could as well be retarded through optimal glycaemic control, blood pressure control, RAS blockade, and SGLT-2 inhibition. Preventing patients from suffering from acute kidney injury can also avoid progression and deterioration of DKD.

Challenges Faced in Primary Care

Despite the importance of proper management of DM and DKD, and despite various international and local clinical guidelines for primary care physicians to follow, primary care physicians still encounter challenges and difficulties in their practice, no matter whether they are working in the public sector or private market. Three key factors, namely systemic, patient and physician factors, have been identified in contributing to the challenges and difficulties.

Systemic factors can be further delineated into those found in the public and private sectors. In the public sector, the constraint on resources is a significant factor. Contact time with patients in Hong Kong is relatively short. Internal practice guidelines with restrictions on certain drug uses (especially those with cost implications) and on the frequency of complication screening, etc. These obstacles might hinder frontline doctors from fully complying with prevailing international guidelines. Waiting time for specialist referral is also rather long, which delays timely management by the experts. Apart from resource constraints, built-in limitations in the system, such as the difficulty in maintaining continuity of care and the lack of automated reminder system, are faced by frontline doctors. In the private sector, patient care by a multidisciplinary team approach is hard to achieve. Patient autonomy is compromised if the corporate medical scheme confines patients’ payments to “listed” doctors, or if the practitioners are employed under group practice. Lack of quality assurance and uncertain compliance with guideline recommendations are also commonly encountered.
CRYSVITA® is a new fully human monoclonal antibody for X-linked hypophosphataemia (XLH) that binds to and inhibits the excess activity of FGF23¹

Excess FGF23 results in phosphate wasting²

Low levels of serum phosphorus can cause rickets and osteomalacia³
Secondly, the patient factor frequently contributes to difficult management of DM and DKD. Treatment compliance issue happens regardless where the patient seeks care from. Managing patients with increased complexity in their chronic diseases and in drug management also induces stress to doctors. Some patients carry insufficient awareness of the possible complications of DM and DKD, and hence they are reluctant to have a full set of investigation, e.g. complication screening, especially if co-payment is needed. Financial concern also plays a considerable role. Nowadays, with more introduction of technology like continuous glucose monitoring and telemedicine, patients with low acceptance in technology would be a drawback to better chronic disease management.

With regard to physician factor, studies have pointed out the inadequacy of skill set and knowledge, as well as deficiency in the detection of CKD. Clinical inertia is also a contributing factor leading to inadequate management offered to patients. Causes of clinical inertia are multifactorial, but all end up affecting chronic disease control. Too much work stress and frustrations would eventually lead to burnout, which is not uncommon in primary care physicians.

POSSIBLE FACILITATORS TO OVERCOME CHALLENGES

There is no one-size-fits-all solution to all the factors affecting the management of DM and DKD in primary care, and facilitators to improve the situations could not give rise to instant results. Systemic factors especially those pertaining to drawbacks at the public sector and limitations in the private practices would have to be ironed out by directives from high management level of relevant authorities, and even more ultimately by change in healthcare system such as the health financing system initiated by the government. In recent years, primary healthcare services have been in the limelight at policy address. Public-Private Partnership (PPP) has been established between the HA and her counterparts in the private sector to better manage public services demands and improve patients’ access to clinical services. Expansion of PPP with more projects over the years have benefited patients and the system with an overall improvement in service quality.

Another potentially constructive component to primary care, especially in the private sector, would be District Health Centre (DHC), the latter aiming at health promotion at individual and community levels, enhancement of coordination among various medical and social sectors and strengthening primary healthcare at the district level. Via community engagement, and via the multidisciplinary teamwork, networking with private doctors within the local district and/or DHC provides health promotion, health assessment, chronic disease management and community rehabilitation. Hopefully when all districts have their DHCs set up, private doctors could collaborate with nursing and allied health professionals, patients, could be empowered with the knowledge and skills for self-management, and would be more motivated to comply with treatment. The general public would have access to early detection of chronic diseases. Primary care physicians should also bear in mind to keep their patients healthy in the community through primary prevention with patient education, early detection of diseases and related complications, early intervention to achieve treatment target and referral to specialists as appropriate. Continuing medical education (CME) to keep up-to-date, uphold the professional standard and tackle clinical inertia is essential to primary care physicians in providing quality care to their patients.

CONCLUSION

Diabetes is one of the most common chronic diseases worldwide and imposes a large economic burden on the healthcare system and the wider economy. A significant proportion of DM patients will develop diabetic kidney diseases. Primary care physicians play an important role in preventing, detecting, managing DM and DKD. Despite all the challenges faced in daily practice, there are positive ways to overcome challenges and to keep patients healthy in the community.

References

8. Diabetes Mellitus Care Report 2019/20, Hospital Authority
9. Hong Kong Reference Framework for Diabetes Care for Adults in Primary Care Settings, 2018, Primary Healthcare Office, FHB.
19. Hong Kong Reference Framework for Diabetes Care for Adults in Primary Care Settings, 2018, Primary Healthcare Office, FHB.
22. Department of Health, Hong Kong. 2014
24. Department of Health, Hong Kong. 2014
30. Department of Health, Hong Kong. 2014
32. Department of Health, Hong Kong. 2014
Diabetes Mellitus - Who to Screen and What to Monitor for Renal Complications

Dr AU YEUNG Yick-cheung

MBBS, MRCP (UK), FHKAM (Medicine)
Specialist in Endocrinology, Diabetes and Metabolism

KEY MESSAGES

- Diabetic kidney disease (DKD) is a clinical diagnosis based on the presence of albuminuria with or without a decline in estimated glomerular filtration rate (eGFR) in the absence of other primary causes of renal diseases.
- Non-albuminuric DKD may present with a decline in eGFR only (without albuminuria).
- Spot urine albumin-to-creatinine ratio (UACR) is used as a screening test for albuminuria, while estimated glomerular filtration rate (eGFR) is calculated from clinical equations. Various factors may affect the accuracy of the tests, and a repeated test is suggested to confirm the diagnosis.
- Other causes for renal deterioration have to be considered especially when the clinical presentation is not typical for DKD.
- It is recommended for patients with established chronic kidney disease (CKD) stage 3 or above to monitor related complications, e.g. metabolic bone disease, acidosis, and anaemia.

Diabetes is the leading cause of renal failure. It is estimated that around 20 to 30% of patients with type 1 diabetes (T1DM) and 30 to 40% of those with type 2 diabetes (T2DM) have diabetic kidney disease (DKD). DKD typically develops around 5 to 10 years after diagnosing T1DM but may present at diagnosis of T2DM. Patients with DKD typically have a long-standing history of diabetes, retinopathy, albuminuria and progressive decline in eGFR. Most patients with DKD are asymptomatic and the DKD is detected by routine periodic testing. Identifying DKD in diabetic patients enables healthcare workers to monitor and offer treatment for DKD and associated cardiovascular risks.

PHENOTYPES OF DIABETIC KIDNEY DISEASES

Traditionally, from data among T1DM patients, diabetic nephropathy is described as a progressive disease with microalbuminuria being an early clinical marker (Table 1): the progression of microalbuminuria to macroalbuminuria or overt proteinuria marks the initiation of faster decline in the estimated glomerular filtration rate (eGFR). This albuminuria-centric model has been challenged by epidemiological studies that show diverging prevalences of albuminuria and reduced eGFR.1,2

<table>
<thead>
<tr>
<th>Hyperfiltration</th>
<th>Clinical features</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Glomerular hyperfiltration</td>
<td>- Raised glomerular filtration rate (GFR)</td>
</tr>
<tr>
<td>- Normal GFR</td>
<td>- Normoalbuminuria</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Silent</th>
<th>- Early histological changes e.g. glomerular basement membrane thickening, focal mesangial sclerosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Normal GFR</td>
<td>- Normoalbuminuria</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Incipient</th>
<th>- GFR normal or mildly decreased</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Mesangial expansion, glomerular basement membrane thickening</td>
<td>- Microalbuminuria</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Overt</th>
<th>- GFR decreased</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Marked glomerular basement membrane thickening, diffuse mesangial sclerosis</td>
<td>- Increased albuminuria</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>End stage renal failure (ESRF)</th>
<th>- GFR < 15ml/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Diffuse global glomerulosclerosis</td>
<td>- Decreasing albuminuria</td>
</tr>
</tbody>
</table>

Table 1. Classically described 5-stage course of DKD (Excerpted from Hormones. 2017 Oct;16(4):351–614)

<table>
<thead>
<tr>
<th>Proposed course of disease</th>
<th>Classical albuminuric DKD</th>
<th>Nonalbuminuric DKD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microalbuminuria progresses to macroalbuminuria while there is unidirectional eGFR decline</td>
<td>The presence of albuminuria & eGFR are independent of each other; eGFR decline may occur without albuminuria</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Suggested screening</th>
<th>Albuminuria</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Implications</th>
<th>Likely points to glomerular lesions. Associated with macrovascular complications & retinopathy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likely points to vascular +/- tubulo-interstitial lesions. Associated with macrovascular complications but less with retinopathy</td>
<td></td>
</tr>
</tbody>
</table>

Macroalbuminuria may regress to normoalbuminuria, whereas eGFR decline, once initiated, will continue to deteriorate progressively. Some diabetic patients with renal impairment have no significant albuminuria.1,2 These observations suggest that renal function decline is independent of the development of albuminuria. DKD
is hence used to replace “diabetic nephropathy” for describing a complex and heterogeneous disease that encompasses different types of renal injury in diabetic patients.

In contrast to the “classical albuminuric DKD”, “nonalbuminuric DKD” is proposed to be an alternative phenotype of DKD (Table 2). It is unclear whether these two models represent true distinctive underlying pathophysiologic changes. It is, however, commonly accepted that the degree of albuminuria (or proteinuria) does not represent the degree of renal impairment, but the presence of confirmed albuminuria remains a strong predictor of eGFR deterioration.

DIAGNOSIS OF DIABETIC KIDNEY DISEASE

DKD is a clinical diagnosis based on the presence of albuminuria with or without eGFR decline, in the absence of signs or symptoms of other primary causes of renal damage (Fig. 1). Abnormalities are to be confirmed with two or more samples saved at least three months apart. Although the gold standard for diagnosing diabetic nephropathy is the renal biopsy, it is infrequently performed in clinical practice unless an alternative diagnosis is suspected. Conditions that prompt such suspicion include: a rapid decline in eGFR (> 5 ml/min/1.73 m²/year); acute onset of severe albuminuria (5-10 fold in 1-2 years); the presence of red blood cell casts, dysmorphic red blood cells or white blood cells casts in the urine sediment; the presence of other systemic diseases or medications that are known to cause renal damage (e.g. systemic lupus erythematosus, non-steroidal anti-inflammatory drugs); abnormal serum electrophoresis or free light chain ratio; and family history of renal disease (Table 3).

Who to screen and what to monitor for DKD (Table 4)

Checking eGFR is suggested at diagnosis of diabetes or when the acute condition is stabilised (e.g. after an episode of diabetic ketoacidosis) and then every 6 to 12 months or as indicated clinically. For T1DM, the screening for microalbuminuria is arranged at around five years after diagnosis and then annually. For T2DM, the screening is performed at diagnosis or after acute hyperglycemia is controlled and then annually thereafter. The presence of renal impairment in T1DM within five years of diagnosis prompts the workup for causes other than DKD. If a patient is found to have micro- or macroalbuminuria, screening for other comorbidities, especially retinopathy and macrovascular disease, needs to be arranged.

Assessment of albuminuria

Urinary albumin-to-creatinine ratio (UACR) in a random spot urine sample (Table 5) is used for checking albuminuria. Timed or 24-hour urine samples are inconvenient and bring no additional clinical benefit. Checking urinary albumin (UA) alone without a simultaneous urinary creatinine (Cr) may be less accurate. A urine albumin excretion ≥ 30 mg/day or UACR ≥ 3 mg/mmol (some suggest 3.4 mg/mmol as cutoff) is defined as albuminuria.

UACR has a high biological variability in various conditions thus affecting its accuracy, as in conditions that change serum albumin levels (dietary protein...
LIVe LiFe!

Ferinject®, delivering 100% IRON into the bloodstream

- Increases Haemoglobin level
- Reduces fatigue and cognitive function impairment
- Optimizes women's health
- Novel design allows for efficient delivery of iron

References:

Pharmaceutical form: Ferric carboxymaltose as solution for injection/infusion. Indications: Feronject® is indicated for the treatment of iron deficiency when oral iron preparations are ineffective or cannot be used. The diagnosis must be based on laboratory tests. Administration: The cumulative dose for replenishment of iron using Feronject® is determined based on the patient’s body weight and haemoglobin level and must not be exceeded. The table in the Summary of Product Characteristics should be used to determine the cumulative iron dose. A single dose of Feronject® should not exceed 1000 mg of iron per day. A maximum of 1000 mg of iron once a week can be administered. Contraindications: Warnings, Overdosage: The use is contraindicated in cases of known hypersensitivity to ferric carboxymaltose or any of its excipients. Anemia is not attributed to iron deficiency and evidence of iron overload or disturbances in utilization of iron. Do not administer by SC or IM route. Closely monitor patients for signs and symptoms of hypersensitivity during and for at least 30 minutes following each administration. Stop treatment if allergic or signs of intolerance occur. Therefore, facilities for cardio-pulmonary resuscitation must be available. In patients with liver dysfunction, parenteral iron should only be administered after careful risk/benefit assessment. Parenteral iron must be used with caution in cases of acute infection, history of asthma, eczema or atopic allergies. Discontinue use in patients with ongoing bacillary disease. Stop immediately in case of paroxysmal hemoglobinuria. A careful risk/benefit evaluation is required before use in pregnancy. Not recommended in children < 14 yr. Monitoring of iron parameters such as serum ferritin and transferrin saturation may assist in recognizing iron accumulation. Undesirable effects: Common (1% to < 10%): Hypersensitivity, headache, dizziness, flushing, hypotension, nausea, injection/infusion site reactions. Interactions: Oral iron therapy should not be started for at least 2 days after the last injection of Feronject®. Legal category: Prescription Only Medicines (POM). Date of preparation: 30th Oct 2017. Full prescribing information provided upon request.

*For more information, please consult with the local representative.
intake, chronic inflammation), exercise within 24 hours prior to test (transient increase in albumin excretion), muscle build, as well as medical conditions associated with a raised UACR independent of renal damage (heart failure, marked hyperglycemia, menstruation and marked hypertension). Therefore, to confirm the presence of albuminuria, repeated samples in 3 to 6 months are suggested.

Assessment of estimated glomerular filtration rate (eGFR)

The glomerular filtration rate (GFR) measurement is usually not used in clinical practice as the process is complex, time-consuming, and cumbersome. Estimation of GFR either by measuring creatinine clearance (CrCl) from a 24-hour urine collection or by calculating with equations based on serum creatinine is clinically more practical. The Modification of Diet in Renal Disease (MDRD) study equation and the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation are the commonly used equations (Table 6). eGFR of < 60 ml/min/1.73m² as obtained via equation(s) is usually defined as decreased GFR.

CrCl by 24-hour urine sample creates inconvenience to patients and usually overestimates GFR (due to increased extrarenal creatinine elimination in advanced renal failure). GFR-estimating equations incorporate variables other than serum creatinine to improve the accuracy; nonetheless, conditions that change creatinine production or secretion (such as drugs interfering with creatinine secretion or dietary changes altering creatinine production) still affect their reliability. Between the MDRD study equation and CKD-EPI equation, the CKD-EPI equation provides better accuracy, especially with increased extrarenal creatinine elimination in advanced chronic renal diseases.

Table 5. Definitions of abnormalities in albumin excretion (Data from KDIGO 2020 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease)

<table>
<thead>
<tr>
<th>Dipstick for protein</th>
<th>Normal to mildly increased (trace to 1+)</th>
<th>Moderately increased (Macroalbuminuria)</th>
<th>Severely increased (Microalbuminuria)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 hour urinary albumin excretion</td>
<td>< 30 mg/day</td>
<td>30 - 300 mg/day</td>
<td>> 300 mg/day</td>
</tr>
<tr>
<td>Spot urine Albumin/Creatinine ratio (UACR)</td>
<td>< 3 mg/mmol</td>
<td>3 - 29 mg/mmol</td>
<td>≥ 30 mg/mmol</td>
</tr>
</tbody>
</table>

Table 6. Equations for estimation of glomerular filtration rate (Data from online nkdep.nih.gov)

| Glomerular filtration rate estimate by CKD-EPI equation in adults | GFR = 141 - min[(Serum creatinine/88.4)/kappa, 1] \(\times\) exp(-max(Serum creatinine/88.4)/kappa, 1)] \(\times\) 0.993 - Sex \(\times\) Race -0.203 \(\times\) Age 0.993 - Sex \(\times\) Race For females, Sex 1.018; alpha = -0.329; kappa = 0.7. For males, Sex 1; alpha = -0.411; kappa = 0.9. For race: black = 1.159; non-black = 1. Estimated GFR \(=\) Creatinine assay \(\times\) (Serum creatinine/88.4)\(^{1.154}\) \(\times\) Age\(^{-0.203}\) \(\times\) Sex \(\times\) Race For creatinine assay: IDMS = 175; Non-IDMS = 186. For sex: Female = 0.742, Male = 1. For race: black = 1.21, non-black = 1. | Glomerular filtration rate estimate by abbreviated MDRD study equation in adults |

COMPLICATIONS OF CHRONIC KIDNEY DISEASE

When a patient’s eGFR is less than 60 ml/min/1.73m², healthcare workers need to watch out for potential complications from chronic kidney disease. Monitoring of blood pressure, body weight, fluid status, serum electrolytes, haemoglobin level and markers for metabolic bone disease (serum calcium, phosphate, parathyroid hormones, vitamin D) is needed in follow-up.³

OTHER RISK FACTORS FOR RENAL DETERIORATION

It is common for diabetic patients to have other chronic diseases such as hypertension, hyperlipidemia, hyperuricemia and obesity.¹ Monitoring and proper management of these chronic diseases, together with glucose control, help prevent the deterioration of renal function in diabetic patients.

CONCLUSION

Screening for DKD is important for diabetic patients as diabetes is one of the leading causes of CKD or ESRD. With the understanding of the phenotype of non-albuminuric DKD, using albuminuria alone for screening of DKD is insufficient. Albuminuria, together with eGFR, are suggested for screening and monitoring of DKD (Fig. 1). It is also important to monitor and offer treatment for other risk factors and complications of chronic renal diseases.

References

Superior CV and Limb Protection

Xarelto® Vascular Dose plus Aspirin

![Image of medication]

28% RRR (p≤0.047)

Significantly reducing the combination of CV death, MI and stroke by nearly a third.1

46% RRR (p≤0.037)

Preventing one out of every two major adverse limb events and major amputations.1

Reassuring safety profile with no significant increase in the most serious types of bleeding.8,1

Xarelto 2.5 mg film-coated tablet

Abreviated Prescribing Information (Please refer to full prescribing information before prescribing.)

Composition: Active ingredient: 2.5 mg rivaroxaban. Excipients: Microcrystalline cellulose, croscarmellose sodium, lactose monohydrate, hydroxypropyl methylcellulose 9000, sodium lauryl sulphate, magnesium stearate, macrogol 4000, titanium dioxide [E171], iron oxide [E172], Indication and Usage: Prevention of arterial thrombotic events in adult patients with coronary artery disease (CAD) or symptomatic peripheral artery disease (PAD) at high risk of systemic events, combined with aspirin (ASA). The recommended dose is 2.5 mg twice daily, with a daily dose of 75 - 100 mg ASA. Duration of treatment should be determined for each individual patient based on regular evaluations and should consider the risk for thrombotic events versus the bleeding risks. Contraindications: Hypersensitivity to the active substance or any of the excipients; active clinically significant bleeding; known or condition considered a significant risk for major bleeding, concurrent treatment with any other anticoagulants except under specific circumstances of switching anticoagulated therapy or when unfortunatelly heparin is given as does necessary to maintain an open central venous or arterial catheter; concomitant treatment of CAD/PAD with ASA in patients with previous hemorrhagic or lacunar stroke, or any stroke within a month; hepatic disease associated with coagulopathy and/or clinically relevant bleeding risk including syphilitic patients with CHF and C or pregnancy and breast feeding.

Warnings and Precautions: Clinical surveillance in line with anticoagulation practice is recommended throughout treatment. Xarelto should be discontinued at the first appearance of a severe skin rash, or any other sign of hypersensitivity in conjunction with mucosal lesions. Not recommended: in patients with severe renal impairment (creatinine clearance ≤ 15 mL/min), in patients receiving concurrent systemic treatment with strong or moderate CYP3A4 inhibitors, i.e., 3a/S-monothes or nor/HRB inhibitors; in patients with increased bleeding risk, paitients receiving concurrent treatment with strong CYP3A4 inducers (e.g., rifampicin) and the patient is closely observed for signs and symptoms of thrombotic; not recommended due to lack of data in treatment in combination with antiplatelet agents other than ASA; in patients below 18 years of age; in patients concurrently treated with dexton, in patients with prothrombin time, utile with caution: in conditions with increased risk of hemorrhage, in patients with severe renal impairment (creatinine clearance ≤ 15 mL/min), or with moderate renal impairment (creatinine clearance 30 - 45 mL/min) concurrently receiving other medicinal products which increase rivaroxaban plasma concentrations; in patients treated concurrently with medicinal products affecting haemostasis, in patients ≥ 75 years of age or with lower body weight; when neuromuscular anesthesis or spinal/neural puncture is employed. Patients on treatment with Xarelto and ASA should only receive concurrent treatment with NSABP if the benefit outweighs the bleeding risk. In patients at risk of adverse gastrointestinal disease protonic acid treatment may be considered. Although treatment with rivaroxaban does not require routine monitoring of exposure, rivaroxaban level may be used in exceptional situations. Rivaroxaban contains lactose. Undesirable effects: Common: anaemia, dizziness, headache, eye haemorrhage, hypotension, haematuria, epistaxis, haemoptysis, gingival bleeding, gastrointestinal tract haemorrhage, gastrointestinal and abdominal pain, dyspepsia, nausea, vomiting, diarrhea, constipation, nausea, constipation, diarrhea, vomiting, constipation.

Aspirin low dose OD

Xarelto vascular dose 2.5 mg BD

MCHK CME Programme Self-assessment Questions

Please read the article entitled “Diabetes Mellitus - Who to Screen and What to Monitor for Renal Complications” by Dr AU YEUNG Yick-cheung and complete the following self-assessment questions. Participants in the MCHK CME Programme will be awarded CME credit under the Programme for returning completed answer sheets via fax (2865 0345) or by mail to the Federation Secretariat on or before 30 September 2021. Answers to questions will be provided in the next issue of The Hong Kong Medical Diary.

Questions 1-10: Please answer T (true) or F (false)

1. Around 20-40% of diabetic patients have diabetic kidney disease (DKD).
2. Decline in estimated glomerular filtration rate (eGFR) must develop after the development of albuminuria.
3. Checking serum creatinine is adequate for screening for DKD.
4. Diagnosis of DKD is based on the presence of albuminuria with or without a decline in eGFR without other apparent causes.
5. Spot urine albumin-to-creatinine ratio (UACR) is an easy clinical test for screening albuminuria.
6. Calculation of eGFR from clinical equations is NOT reliable.
7. Repeated tests (e.g. UACR and/or eGFR in 2-4 months time) are suggested to confirm the diagnosis of DKD.
8. If the presentation of DKD is not typical (e.g. rapid onset, red cell cast), the workup for other renal pathologies is suggested.
9. Decline in eGFR is expected to be faster in diabetic patients compared to otherwise healthy individuals.
10. Screening for other renal complications (e.g. metabolic bone disease, acidosis and anaemia) is suggested for patients with established chronic kidney disease stage 3 or above.

Answers to August 2021 Issue

Colorectal Cancer Screening for Individuals with Family History

Name (block letters): __________________________ HKMA No.: __________________ CDSHK No.: ________________
HKID No.: __ __ - __ __ __ __ X X (X) HKDU No.: __________________ HKAM No.: ________________
Contact Tel No.: ____________________________ MCHK No. / DCHK No.: __________________ (must fill in)
In the treatment of patients with type 2 diabetes and established CV disease receiving standard of care,

CV death can strike at any time

BATTLE CV DEATH NOW
MORE THAN EVER

JARDIANCE demonstrated 38% RRR in CV death

Established HbA1c efficacy

Demonstrated safety profile

Convenient, once-daily oral dosing

ADA & EASD recognize JARDIANCE as the SGLT2 inhibitor with stronger evidence of CV benefits

The Only GLP-1 with CV INDICATION

Jardiance is indicated in T2DM patients and established cardiovascular disease to reduce the risk of cardiovascular death.

Your Trustable Partner with Years of Experience and Confidence

Effective HbA1c reduction

Fewer hypoglycaemia compared with NPH

Does not require resuspension

Award-winning SoloSTAR® pen
Optimising the Use of Anti-Diabetic Drugs in Patients with Type 2 Diabetes

Dr CHAU Suet-ming
MBChB, FHKCP, FHKAM (Medicine)
Specialist in Endocrinology, Diabetes and Metabolism

KEY MESSAGES

• An individualised approach is recommended for establishing the glycaemic target for each diabetic patient.

• When treating patients with type 2 diabetes, it is important to identify high-risk patients and patients with established atherosclerotic cardiovascular disease (ASCVD), chronic kidney disease (CKD), and heart failure.

• After metformin, early use of SGLT2 inhibitors and GLP1-RAs are advocated in those who are at risk of progressive renal and cardiovascular disease.

• Patients with type 2 diabetes and CKD should be managed via a comprehensive strategy to reduce the risks of kidney disease progression and cardiovascular disease.

Type 2 diabetes is a progressive disease. For most patients, after initiation of monotherapy with metformin, combination therapy is necessary to achieve glycaemic control in the long term. The following paragraphs give an update on optimising the use of anti-diabetic drugs based on the American Diabetes Association (ADA) 2021 guideline, the American Association of Clinical Endocrinologists (AACE) 2020 guideline and the Kidney Disease: Improving Global Outcomes (KDIGO) 2020 guideline.

GLYCAEMIC TARGET

When we manage patients with type 2 diabetes, their HbA1c and risk factors, particularly the ASCVD risk and the risks of chronic kidney disease or heart failure, are considered first. We set an individualised glycaemic target, aiming to achieve an optimal HbA1c < 6.5%. Young patients with low cardiovascular risk and an absence of comorbidities may encourage their physicians to set a more stringent HbA1c goal. Conversely, the risk of hypoglycaemia in an elderly patient may cause the physician to favour an A1c target that is higher than 8%. All decisions need to be based on medical needs and a balance of risks and benefits of treatment choices. The KDIGO 2020 guidelines take the severity of CKD into account, alongside macrovascular complications, comorbidities, life expectancy, and hypoglycaemia when considering A1c goal setting. In diabetes-induced CKD, a reduction in GFR and concomitant increase in albuminuria are strong predictors of higher cardiovascular risk and hence a poorer prognosis.

CHOOSING ANTI-DIABETIC AGENTS

If we look at the algorithm from the ADA 2021 guidelines, for patients who are relatively young and low risk, after metformin, the decision depends on the cost, the need for weight loss, the risk of hypoglycaemia, and of course, the patient’s own informed choice. We also take into account the feasibility and affordability of the treatment options. After initiation of drug treatment, the glycaemic control is carefully monitored and medication adjusted accordingly.

The ASCVD risk, presence of heart failure, and CKD are examined and monitored in at-risk patients. Both GLP-1RA and SGLT2i are recommended as the first-line anti-diabetic agents for patients with ASCVD risk, and others are added later if the glycaemic target has not been met. SGLT2i is the treatment of choice for patients suffering from heart failure, and for patients with CKD, GLP-1RA is recommended as an add-on in view of its cardiovascular benefit.

The American Association of Clinical Endocrinology (AACE) 2020 guidelines suggest a similar approach. Assessment of ASCVD risk and CKD risk is recommended before choosing a specific treatment. Metformin is the first-line treatment, and GLP1-RA and SGLT2i are recommended as add-ons for all entry A1c levels, except for A1c > 9%, in which case insulin is recommended for patients with symptomatic hyperglycaemia.

The KDIGO 2020 guidelines recommend the use of metformin and SGLT2i in patients with an eGFR > 30ml/min. GLP-1RA is the preferred add-on for glycaemic control, taking into account the comorbidities and cost of the drug therapies. Furthermore, in susceptible patients with diabetes and CKD, the KDIGO guidelines recommend lifestyle modification, good blood pressure control and lipid management, together with the use of RAS blockade and antiplatelet therapies.

If we look at the profiles of the anti-diabetic drugs that are currently in use, GLP-1RA and SGLT2i are the two choices that offer the greatest renal and cardiac benefits. This paper will focus on these new therapies shortly, but first, there will be a review of the more traditional drug, metformin.
METFORMIN

Metformin is recommended as the first-line treatment in all patients with type 2 diabetes. However, since there is insufficient safety data in patients with an eGFR < 30 ml/min or dialysis, it is recommended to discontinue its use, or not to initiate the use of metformin in patients with an eGFR < 30 ml/min. The same dose can be continued for those with an eGFR > 60 ml/min (G2). For those with eGFR between 45-59 ml/min (G3a), the same dose can be continued unless patients are prone to hypoperfusion or hypoxemia. In those with an eGFR of 30-44 ml/min (G3b), the metformin dose should be halved, and patients should have their eGFR regularly monitored while on metformin.

SGLT2 INHIBITORS

This class of therapy has well established anti-glycaemic effect in type 2 diabetes patients. It promotes glycosuria by blocking the paired reuptake of sodium and glucose in the proximal renal tubules. In those with normal or near-normal kidney function, there is an increase in filtered glucose load in parallel with hyperglycaemia, so its glucose-lowering effect is greater in those starting with a higher Hba1c. In general, when comparing to placebo, SGLT2i reduces Hba1c values by 0.79% and 0.61% when used as monotherapy and combination therapy, respectively.

In addition to its anti-glycaemic effect, SGLT2i has a non-glycaemic pleiotropic effect. There is effective weight loss through osmotic diuresis and caloric loss, and a reduction in blood pressure and albuminuria. The postulated mechanism is a reduction in glomerular hyperfiltration due to afferent arterioles vasoconstriction. Anti-inflammatory and antioxidant effects are also suggested.

EMPA-REG5, CANVAS6 and DECLARE-TIMI 587 were the three major cardiovascular outcome trials for empagliflozin, canagliflozin and dapagliflozin, respectively. Most patients in the trials have an eGFR > 60 ml/min. They all showed significant risk reduction for their primary endpoint - the 3-point MACE (Major Adverse Cardiac Events) and heart failure benefit. There were significant renal benefits in terms of worsening nephropathy and renal composite endpoints.

CREDENCE8 is a clinical trial using canagliflozin in type 2 diabetes patients with albuminuria CKD. More than half of the patients had an eGFR < 60 ml/min. Significant cardiovascular and renal benefits were demonstrated. The DAPA-HF dapagliflozin trial9 showed that patients with a history of heart failure (around 18% were normo-glycaemic) had a significant 26% relative risk reduction in worsening heart failure or CV deaths. The result did not differ by diabetes status. There was also a significant relative risk reduction of worsening nephropathy of 29%.

It is observed that the effect of SGLT2i on glycaemic benefit falls as eGFR declines. On the other hand, its effect on reducing CKD progression and CVD risks appear to be independent of eGFR. Currently, the KDIGO 2020 guidelines recommend treating T2DM, CKD and eGFR ≥ 30 ml/min with an SGLT2i. The FDA did not recommend the use of dapagliflozin or empagliflozin in patients with eGFR < 45 ml/min, although they approved a lower cut-off eGFR for canagliflozin. However, SGLT2i was used up to 30 ml/min in cardiovascular outcome trials (CVOTs), and the dosage was even lower in the more recent trials. The trend of using SGLT2i at lower eGFR is likely to continue as future trial results become available.

GLP-1 RECEPTOR AGONISTS

The glucometabolic effect GLP1-RAs is due to the incretin effect, which is the stimulation of glucose-dependent release of insulin from pancreatic islet cells with glucose ingestion. Glucagon secretion is reduced, gastric emptying is slowed, and the patient feels full. Its use also facilitates significant weight loss in various major trials. It reduces insulin resistance, and on average, it has an Hba1c lowering efficacy by 1-1.5%. It has also been reported to improve lipid profile, reduce blood pressure, and lower albuminuria.

Most of the major trials for GLP1-RAs recruited patients with established CVD. The REWIND trial10 of dulaglutide recruited patients with moderate to severe CKD. Significant relative risk reduction in 3-point MACE was noted with LEADER11, SUSTAIN-612 and REWIND, while CV safety was demonstrated in both ELIXA13 and ESXCEL.14 These findings suggest a potential CV class effect of GLP1-RA. Renal benefits were also noted, in which the composite kidney endpoint was mainly driven by a reduction in albuminuria, while no clinically relevant change in eGFR was observed. In AWARD-716, in which dulaglutide was compared with insulin glargine in addition to the use of prandial Humulin, the eGFR did not significantly decline with dulaglutide, but a decrease in eGFR was observed with the use of insulin glargine. The KDIGO 2020 guidelines recommended using GLP1-RAs in addition to metformin and SGLT2i to meet the glycaemic target, or when these two agents could not be used.

When choosing GLP1-RA, since exenatide is renally excreted, it is not recommended to use exenatide in patients with an eGFR < 30 ml/min. There is also limited data on the use of lixisenatide in patients with an eGFR < 30 ml/min. As for other agents, dulaglutide is recommended with eGFR > 15 ml/min, and liraglutide and semaglutide require no renal adjustment.

References

Staging of Diabetic Kidney Disease and the Clinical Action Plan

Dr Sunny SH WONG
MBBS(HK), MRCP(UK), FHKCP, FHKAM(Med), FRCP (Glasg, Edin, Lond)
Consultant Nephrologist & Head of Division of Nephrology, Department of Medicine and Geriatrics, United Christian Hospital
Council Member, Hong Kong Society of Nephrology

KEY MESSAGES

- Annual screening for the development or progression of Diabetic Kidney Disease (DKD).
- Keep Diabetes Mellitus (DM) under good control with individualised target.
- In the patient with high cardiovascular/renal risk or with overt nephropathy, put the patient on a sodium-glucose cotransporter-2 inhibitors (SGLT2i), followed by a glucagon-like peptide-1 receptor agonist (GLP-1 RA) if necessary.
- In a DM patient with hypertension, or microalbuminuria or above, put the patient on an angiotensin-converting enzyme inhibitor (ACEi) or angiotensin II receptor blocker (ARB).
- Manage hyperlipidemia. Lifestyle modification, including regular exercise, dietary control and smoking cessation, is an integral part in the management of DKD.
- Work up for alternative causes of renal disease, if the clinical presentation is atypical of DKD.

INTRODUCTION

DM is a very important healthcare problem worldwide and locally. In Hong Kong, the prevalence of DM is estimated to be 10%1. About 30-40% of DM patients will develop DKD, and DKD accounts for 52% of new cases requiring renal replacement therapy in the public hospital in Hong Kong in 2020.

STAGE AND NATURAL PROGRESSION OF DIABETIC KIDNEY DISEASE

DKD typically evolve through several stages. The first noticeable change is the increase in estimated glomerular filtration rate (eGFR), often called hyperfiltration. This is usually followed by the onset of albuminuria, which typically progresses from normal (< 30 mg/24 hour, or a spot urine albumin-creatinine ration (ACR) of < 3 mg/mmol or 30 mg/g) to moderately increased albuminuria (microalbuminuria) (30-300 mg/24 hour, or a spot urine ACR of 3-30 mg/mmol or 30-300 mg/g), to severely increased albuminuria (macroalbuminuria) (> 300 mg/24 hour, or a spot urine ACR >30 mg/mmol or 300 mg/g). Some patients even progress to nephrotic syndrome. With persistent albuminuria, eGFR usually progressively declines and finally reaches end-stage renal failure. As there is usually a delay in the onset and diagnosis of type 2 DM, albuminuria may already be present upon diagnosis in some type 2 DM patients.

Although the development of albuminuria is an important landmark of DKD, some type 2 and, to a lesser extent, type 1 patients may develop DKD with progressive decline in renal function without albuminuria. The mechanism is not readily known, but in type 2 DM patients, this may be a result of predominant macrovascular disease.

PREVENTION AND MANAGEMENT OF DIABETIC KIDNEY DISEASE

As albuminuria usually marked the onset of DKD, screening for its development is important for early diagnosis and aggressive management. The American Diabetic Association (ADA) recommends at least annual screening of urinary albumin for type 1 DM patients with duration ≥ 5 years and in all patients with type 2 DM2. Renal function by eGFR, blood pressure (BP) and ophthalmologic examination to look for diabetic retinopathy should be done at the same time. More frequent monitoring is warranted with increasing albuminuria and deteriorating renal function2.

To prevent the development of DKD, early aggressive glycaemic control has been shown in both type 1 and type 2 DM patients to reduce the risk of moderately increased or severely increased albuminuria3,4. So, what should be the target HbA1c to aim at? The Kidney Disease Improving Global Outcomes (KDIGO) 2020 guideline recommends that the HbA1c target be individualised, as the benefits and harms of targeting specific HbA1c levels vary according to key patient characteristics. For the patient with mild chronic kidney disease (CKD), absent or minor macrovascular complications, few comorbidities, long life expectancy, good hypoglycaemia awareness, and not prone to hypoglycaemia, we can aim at < 7% or even < 6.5%. However, for older patients with other clinical characteristics on the other end of the spectrum, an HbA1c target of < 7.5% or < 8% may be selected5.

In terms of pharmacological treatment of type 2 DM, metformin remains the first drug of choice as recommended by the KDIGO 2020 guidelines and the ADA 2021 guidelines for its safety, effectiveness in glycaemic control, low cost5, and modest long-term benefits in prevention of diabetic complications6. SGLT2i with its strong renal and cardiovascular
In the cardiovascular outcome trials of EMPA-REG OUTCOME, CANVAS, and DECLARE-TIMI 58 with the use of empagliflozin, canagliflozin and dapagliflozin respectively, cardiovascular benefits including a reduction in hospitalisation for heart failure, myocardial infarction, stroke and cardiovascular death and death from any causes have been demonstrated. In terms of renal protection, all three cardiovascular trials and the renal outcome trials CREDENCE and DAPA-CKD demonstrated a significant risk reduction in worsening eGFR, new onset end-stage renal failure, renal-related death and albuminuria. The strong renal protective effect from the above trials is independent of its glucose lowering effect, which is only modest.

Moreover, for CREDENCE and DAPA-CKD trials, the positive effects were obtained in a background of renin-angiotensin blockade, the only approved class of renal protective medications until recently. The additional renal protective effects offered by SGLT2i further highlights the significance of it as a new class of renal protective medication. One has to be aware that during the early weeks of initiating SGLT2i, an initial dip in eGFR is seen, but thereafter, the decline in eGFR was slower with SGLT2i than placebo. The initial eGFR dip is due to the reduction in intra-glomerular pressure, which is renal protective in the long term. One is also reminded that SGLT2i may need to be withheld during times of prolonged fasting, surgery or critical medical illness when the risk of ketoacidosis is increased, and also be careful when there is a risk of volume depletion.

In patients with type 2 DM and CKD, who have not achieved glycaemic target despite the use of metformin and SGLT2i, or are unable to use them, a GLP-1 RA is recommended. Glucago-like peptide-1 (GLP-1) is an incretin hormone secreted in the small intestine upon stimulation by glucose or other food. It results in glucose dependent stimulation of insulin secretion. It also reduces gastric emptying and reduces appetite, which results in weight loss. Liraglutide, injectable upon stimulation by glucose or other food. It results in increased glucose excretion and a modest reduction of blood glucose. The resultant glycosuria produces the diuretic effect. SGLT2i acts by inhibiting renal tubular reabsorption of glucose and sodium chloride, resulting in increased glucose excretion and a modest reduction of blood glucose. The resultant glycosuria produces the diuretic effect. SGLT2i acts by inhibiting renal tubular reabsorption of glucose and sodium chloride, resulting in increased glucose excretion and a modest reduction of blood glucose. The resultant glycosuria produces the diuretic effect. In these trials, infarction or nonfatal stroke in the LEADER, SUSTAIN-6 semaglutide and dulaglutide have demonstrated a good BP control help to mitigate such risks. ADA recommended that BP target should be individualised. For individuals with diabetes and hypertension at lower risk for cardiovascular disease, the BP target should be < 140/90. For individuals at higher cardiovascular risk, with existing ASCVD or with CKD and or albuminuria > 30 mg/24 hour, they should go for a BP target of < 130/80. One may use the following ASCVD risk calculator for risk estimation: https://tools.acc.org/ASCVD-Risk-Estimator-Plus/#/calculate/estimate/. In terms of the classes of drugs to use, in patients with diabetes, hypertension and albuminuria, RAS blockade by an ACEi or an ARB should be administered as first-line therapy. RAS blockade has been shown to reduce albuminuria and retard renal progression, independent of their BP lowering effect. They should be titrated to the highest approved tolerated dose. Serum creatinine and potassium should be monitored within 2-4 weeks after initiation. An initial rise of serum creatinine is common, reflecting the haemodynamic effect of RAS blocker which is actually renal protective. Therefore, for a rise in serum creatinine of less than 30%, the RAS blocker can be safely continued. Combination therapy with ACEi and ARB can result in further reduction in BP and albuminuria. However, in clinical trials, no difference in the primary endpoint of CKD progression or death or improved cardiovascular outcome has been shown. Moreover, there was a significant increase in hyperkalaemic events and the risk of acute kidney injury doubled. Therefore, this combination is not recommended.

Good lipid control and lifestyle modification with smoking cessation, diet control and exercise are important in DKD patients. They are recommended to maintain a protein intake of 0.8 g protein/kg body weight per day. Salt intake should be less than 5 g sodium chloride per day. They are also recommended to undertake moderate-intensity physical activity for a cumulative duration of at least 150 minutes per week, or to a level compatible with their cardiovascular and physical tolerance.

PATIENT WITH CLINICAL FEATURES ATYPICAL OF DIABETIC KIDNEY DISEASE

One has to be aware of clinical scenarios which are not typical of DKD. It is uncommon for type 1 DM patients with less than five years’ duration to develop overt kidney disease. It is also uncommon for type 1 DM patients to develop proteinuria or renal impairment without diabetic retinopathy. Abrupt onset of significant proteinuria and rapid renal deterioration is also atypical of diabetic nephropathy. In these scenarios, another serious renal disease should be suspected. The patient should be referred to a nephrologist for evaluation early. A renal biopsy is commonly required.

CONCLUSION

DKD is an important complication of DM. Early identification, aggressive management with lifestyle modification and pharmacological therapy is needed to reduce risks of kidney disease progression and cardiovascular disease.
Your Trusted Renal

For Pre-dialysis Patients

Fresubin Renal

- Tailor-made for patients with impaired renal function
 - High energy density to meet the energy requirements in a low volume
 - Reduced protein quantity
 - 100% milk protein with all essential amino acids
 - Reduced electrolyte content
 - With fibre

Outstanding fat quality
- High MUFA
- with MCT
- with EPA and DHA from fish oil

Modified carbohydrate composition for renal patient with impaired glucose metabolism

Ketosteril

Gain precious time for your patients
- Delays the start of dialysis\(^1\,^2\)
- Reduces nitrogenous waste\(^3\)
- Preserves renal status\(^1,^4\)
- Ensures safe CKD nutrition therapy\(^1,^5\)
- Good patient adherence & high quality standards

Fresenius Kabi Hong Kong Ltd.
Room 5001-5027, 50/F, Sun Hung Kai Centre, 30 Harbour Road, Wanchai, Hong Kong Tel: (852) 2152 1330 Fax: (852) 2119 0815

Nutrition Solutions

For Dialysis Patients

VELPHORO®

More phosphorus control, fewer pills, more flexibility

- Demonstrated efficacy in phase III clinical trials, proven in the real world.1-9
- A well-tolerated phosphate binder with minimal drug-drug interactions.10,11
- High binding capacity allows for a low pill burden,12,13 which has the potential to improve adherence.7,8
- Simple dosing and administration providing your patients with a convenient phosphate binder.10

Nephroprotect®

SmofKabiven®

Intradialytic parenteral nutrition (IDPN) for Dialysis patients

- Supplementing nutrients during hemodialysis to improve nutritional status in undernourished HD patients.14-17

Amino acid solution specially for patients with renal insufficiency

- Enriched in essential AA, especially BCAA
- High tyrosine and histidine concentration
- Low phenylalanine concentration

A 3-chamber bag containing amino acids, glucose and lipids

- Contains SMOFlipid, the unique 4-oil mix (soybean, MCT, olive oil and fish oil)
- Ensuring the appropriate nutrition for most patients in a single bag

www.fresenius-kabi.com/hk

Email: infohk@fresenius-kabi.com

For healthcare professional only
Why does **Nitrolingual-Spray** outweigh NTG Tablet?

Sublingual Nitroglycerin or Spray in the treatment of Angina

- **Reported “No headache”**
 - Nitrolingual Spray (n=175): 58.3%
 - Nitroglycerin Tab (n=174): 38.5%
 - *p<0.001*

- **Felt medication helped a lot**
 - Nitrolingual Spray: 60.3%
 - Nitroglycerin Tab: 40.0%
 - *p<0.001*

- **Significantly fewer headache and hypotension episodes**
- **Faster, greater and more prolonged vasodilation effect**
- **Proven stability for up to 3 years after first use**

Dosage Administration

<table>
<thead>
<tr>
<th>Acute Relief</th>
<th>Administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>One to two metered sprays</td>
<td>At the onset of an attack, administer one to two metered sprays sublingually. Repeat again after 10 minutes if there is no response.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prophylactic Use</th>
<th>Administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>One to two metered sprays</td>
<td>Prior to exercise</td>
</tr>
</tbody>
</table>

Ferrum Hausmann® Chewable Tablet

Compositions: Each chewable tablet contains: 100mg of Iron(III)-Hydroxide Polymaltose Complex (IPC), cyclamate, flavouring, excip. procompresso. **Indication:** Treatment of latent iron deficiency and iron deficiency anaemia. Prophylactic therapy of iron deficiency during pregnancy.

Dosage & administration: Dosage and duration of therapy are dependent upon the extent of iron deficiency; iron deficiency anaemia (children >12 years, adults) and iron deficiency anaemia children (>12 years), adults, nursing mothers and pregnant women: 1 chewable tablet daily or can be taken at one time with a meal. For pregnant women: 1 chewable tablet during or immediately after a meal. **Contraindications:** Ferrum Hausmann® Chewable Tablet is contraindicated for iron overload (e.g. haemochromatosis, haemosiderosis) or disturbances in iron utilization (e.g. lead anaemia, sideroacheresis and sideroblastic anaemia), known intolerance of any of the ingredients. During pregnancy and lactation Ferrum Hausmann® Chewable Tablet should be used only after consulting a medical doctor or pharmacist.

Undesirable effects: Very rare: constipation, diarrhoea, nausea, abdominal pain, gastritis, diarrhoea, vomiting, rash, a darkening of the stool due to elimination of non-iron iron. **Legal Classification:** Not a Poison. **Date of preparation:** September 2018. Full prescribing information provided upon request. Adverse event should be reported. For further information please contact Hong Kong Medical Supplies Co., Ltd. 28063112, sales2@hkmedsup.com.hk and the Pharmacovigilance Department at Vifor Pharma Asia Pacific Pte. Ltd., APAC@viforpharma.com

For further information: HONGKONG MEDICAL SUPPLIES LTD.
Tel: 2806 3112 Fax: 2887 3425
Email: sales2@hkmedsup.com.hk
Website: www.hongkongmedical.com.hk

Pleasant Iron for Better Health

Ferrum Hausmann®: Daily Therapeutic Doses

<table>
<thead>
<tr>
<th>Chewable Tablet</th>
<th>Syrup</th>
<th>Drops</th>
</tr>
</thead>
<tbody>
<tr>
<td>100mg/tablet</td>
<td>10 mg/ml</td>
<td>50 mg/ml</td>
</tr>
<tr>
<td>100 - 300 mg</td>
<td>1 - 3 tablets</td>
<td>10 - 30 ml</td>
</tr>
</tbody>
</table>

All doses are expressed in the form of elemental iron.
ACKNOWLEDGEMENT

I would like to sincerely thanks the Hospital Authority Central Renal Committee for providing the data from the Hong Kong Renal Registry.

References

Medical Bulletin
Improving Diabetic Control and Kidney Protection: What You Need to Know from Dietitians’ Perspective

Ms Cherry PY LAW
Registered Dietitian (UK), Dietitian, Pamela Youde Nethersole Eastern Hospital

INTRODUCTION

Diabetes mellitus is the most common cause of end-stage renal failure in Hong Kong. Nutritional intervention is an essential aspect in the management of diabetic kidney disease with the potential for slowing down the disease progression through optimisation of glycaemic, proteinuria, blood lipid and blood pressure control. Nutritional intervention also aims to provide a palatable and attractive diet, to prevent protein-energy malnutrition, and to control oedema and serum electrolytes and phosphorus.

INDIVIDUALISED HEALTHY BALANCED DIET

Kidney Disease Improving Global Outcomes (KDIGO) 2020 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease (CKD) suggests that “patients with diabetes and CKD should consume an individualised diet high in vegetables, fruits, whole grains, fibre, legumes, plant-based proteins, unsaturated fats, and nuts, and low in processed meats, refined carbohydrates and sweetened beverages”. Adherence to a diet high in fibre and low in refined and processed food has been proven to provide numerous health benefits for general populations, and is applicable to patients with diabetic kidney disease.

PROTEIN

KDIGO 2020 guideline recommends restricting protein intake to 0.8 g/kg body weight/day for non-dialysis-dependent diabetic kidney disease patients. Kidney Disease Outcomes Quality Initiative (KDOQI) Clinical Practice Guideline for Nutrition in CKD: 2020 Update recommends restricting protein intake to 0.6-0.8 g/kg body weight/day under close clinical supervision for adults with stage 3 to 5 chronic kidney disease and diabetes. Long-term effects of a high protein diet on kidney function are unknown. A high protein diet may cause harm by increased kidney amino acid excretion. A high protein diet could increase the acid load, which precipitates or worsens metabolic acidosis. It could also increase glomerular hyperfiltration, which causes glomerulosclerosis and tubulointerstitial injury. Excessive dietary protein intake increases the accumulation of metabolic waste products in patients with chronic kidney disease, which in turn may suppress appetite and stimulate muscle protein wasting. Low protein intake could potentially slow down the progression of chronic kidney disease, reduce clinical symptoms and postpone the need to start dialysis treatment. However, diabetic kidney disease patients may already restrict their dietary carbohydrate and fat intake to manage diabetes and its complications. Following a very low protein diet further reduces their dietary calorie intake, which may cause malnutrition and may make hypoglycemia more common. Both KDIGO and KDOQI guidelines do not have any specific recommendation for the type of protein (plant vs animal) with regard to their respective effects on nutritional status, progression of kidney disease, phosphorus levels and blood lipid profile.

ENERGY

Adequate energy intake is required to spare/preserve dietary protein for tissue protein synthesis. However, excessive intake of dietary calories leads to overweight, which in turn worsens glycaemic and blood pressure control. KDOQI 2020 guideline recommends 25-35 kcal/kg body weight/day (actual body weight for those with underweight or normal body weight, adjusted body weight for those with overweight) for patients with diabetic kidney disease. Dietary energy recommendation is based on individual nutritional needs, such as age, sex, level of physical activity, body composition, weight status goal, stage of chronic kidney disease, concurrent illness and presence of inflammation.

CARBOHYDRATES

Good glycaemic control delays the progression of diabetic kidney disease. Choosing food high in fibre (such as whole-grain cereals, beans, nuts, fruits and vegetables) and low in glycaemic index helps to improve glycaemic control. People with diabetes should have an individualised meal plan with tailor-made carbohydrate distribution matching their glycaemic control and nutritional needs.

FAT

Fat is a good source of energy and enhances the flavour of food. American College of Cardiology/ American Heart Association 2013 guideline on lifestyle management to reduce cardiovascular risk recommends dietary saturated fat intake should be limited to no more than 5-6% of total energy, and dietary trans fat intake should be minimal. Food high in saturated fat include fatty meat, animal skin, tallow, lard, butter, high-fat dairy products and food made with palm oil. Trans fat is
commonly found in fried foods, baked goods, fast foods and processed foods.

SODIUM

Excessive intake of dietary sodium affects the anti-proteinuric effect of angiotensin-converting enzyme inhibitors, as well as, control of proteinuria, hypertension and oedema. KDIGO 2020 guideline recommends restricting sodium intake to no more than 2 g (5 g sodium chloride) per day, except for people with sodium-wasting nephropathy, excessive sodium sweat losses during high temperatures, and high physical activity levels.\(^1\) Hong Kong Population Health Survey 2014/15 showed that Chinese people aged 15-84 years had 8.8 g sodium a day, 4.4 times more than the recommendation.\(^4\) To control dietary sodium intake, sodium-containing seasonings and preserved foods intake should be limited. Diabetic kidney disease patients should be advised the exchanges of sodium-containing seasonings. They are also encouraged to follow low sodium recipes and measure the quantity of sodium-containing seasonings when preparing food at home to improve the compliance with a low sodium diet. Natural seasonings (such as ginger, garlic, pepper, onion, etc.) may enhance the flavour of food. Eating out is a common habit among Hong Kong people. Tips for choosing low sodium menu items should be given to empower patients to make better eating out choices.

POTASSIUM AND PHOSPHORUS

As renal function declines, people with diabetic kidney disease may have hyperkalemia and hyperphosphatemia. KDOQI 2020 guidelines recommend adjusting dietary potassium and phosphorus intake to maintain serum potassium and phosphorus within the normal range.\(^2\) High potassium food include tea, coffee, soup, beans, nuts, dairy products, fruits, vegetables, mushrooms and low sodium salt. Low potassium fruits and vegetables should be chosen to maintain a low potassium balanced diet. Vegetables should be soaked and boiled to reduce their potassium content. High phosphorus foods include internal organ meat, meat and bone soup, dairy products, beans, nuts, chocolate, whole grain cereals and processed food with phosphorus food additives. Phosphorus additives are widely used in pre-packed foods. Ingredients lists in food labels of pre-packed foods should be checked to determine whether they contain phosphorus additives. Due to poorer phosphorus absorption in plant-based food than animal-based ones, soynibs and their products as protein sources and whole-grain cereals are allowed for people with hyperphosphatemia.

CONCLUSION

Nutritional intervention is important in the management of diabetic kidney disease. It helps to optimise patients’ nutritional status, align conflicting comorbid nutritional requirements, as well as, minimise risks imposed by comorbid conditions and alterations in metabolism on the progression of kidney disease.\(^2\) Dietitians are responsible for carrying out the detailed dietary assessment of patients in order to understand their needs. They also help patients design their individualised meal plans and empower patients to modify their dietary habits and lifestyles.

References

Better Care for Patients with Diabetes and Kidney Disease
A Road Map for Diabetes Care: From Risk Assessment to Empowerment

Ms Veronica Siu-chan HUNG
MHA (Aus.), BN (Aus.), FHKAN (Medicine)
Nurse Consultant (Diabetes)
Department of Medicine and Geriatrics, Tuen Mun Hospital

INTRODUCTION

According to Diabetes Atlas (2019)\(^1\), about 463 million global adults have diabetes and the estimates rise to 578 million by the year 2030, and 700 million by 2045.

For the local situation in Hong Kong, the prevalence of diabetes in adults is estimated to be 10%, which means 1 in 10 people is diabetic, half of whom are undiagnosed; for age over 65 years, the estimate is 1 in 5 with diabetes. The Hospital Authority (HA) of Hong Kong, a government-subsidised non-profit organisation, provides over 65% of primary healthcare services and more than 90% of secondary and tertiary healthcare services\(^2\).

THE ROLE OF DIABETES CENTRE

The centre is a hub to provide various services to support diabetes care for diabetic patients, their carers and even our healthcare professionals; these services include metabolic risk assessment, patient empowerment, diabetes intensification, help desk and coordination work.

TARGETED ACTIVE INTERVENTION (TAI)

In the general medical specialist outpatient clinics (SOPC), doctors usually engage with patients with multiple medical problems within a very short consultation time. The referral rate of diabetes patients to structured management is far from satisfactory. The targeted Active Recruitment for Intervention (TAI) programme has been established within the Hospital Authority structure since 2017 to fill this service gap. A key target is for the patient group who have not undergone metabolic assessment within the previous two years. The initial intervention is to perform the metabolic risk assessment.

CARE PATHWAY OF THE PATIENT JOURNEY

In line with the KDIGO 2020\(^3\) recommendation (Fig. 1), the care pathway of the patient journey is

- To perform diabetes metabolic risk assessment followed by providing empowerment related to diabetes complication and target of metabolic control and its implications
- To stratify the risks
- To identify silent complications for early intervention
- To make a timely referral
- To coordinate the care planning

Fig. 1: Care pathway of the patient journey from risk assessment, empowerment, risk stratification, coordination care and review to risk factor control (Excerpted from KDIGO 2020 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease\(^3\))

METABOLIC RISK ASSESSMENT (MRA)

Components of MRA

There are pull-down manuals to guide nurses to input data and information onto Clinical Management Service (CMS), including past medical history and family history; lifestyle assessment; medications; technology use; behavioural and diabetes self-management skills; physical assessment (including fundus and foot examination), and laboratory examination. The components of structured MRA is comprehensive comparably to the international guideline Standard of Medical Care in Diabetes 2021\(^4\).

Among the MRA components, nine parameters are used to evaluate the risk level through the risk engines: laboratory tests including HbA1c, LDL-cholesterol, serum creatinine, urine albumin, as well as clinical assessment including blood pressure, retinal screening, foot surveillance, and smoking status.
Why is Conduction of MRA Important?

Diabetes is a chronic silent metabolic disease, and if not well controlled, micro and macrovascular disease will develop silently, progressively and can lead to organ damage such as late-stage retinopathy, nephropathy, ischaemic heart and stroke. Landmark studies\(^6\) showed tight metabolic control brings markedly decrease complications.

Two reports are automatically generated: one report is the Metabolic Risk Assessment Report for healthcare professionals, and the other report is the Metabolic Risk Assessment Patient Summary in Chinese version for patients.

MRA can provide healthcare professionals essential biochemical data and metabolic-related risk status so as to take timely interventions to prevent, retard or delay the development of complications and to provide specific individualised treatment care planning. It is crucial that the diabetes patients and their carers have in their hands complete, detailed information on their diabetes condition and take an active role in self-care and self-management.

EMPOWERMENT

Empowerment is a cornerstone for chronic disease management. Structured education can empower and motivate patients on diabetes self-care management. As patients have to spend most of their time 8,765 hours per year to take care of their metabolic disease, skills and knowledge in coping with changes in circumstances or emergent problems are very important.

There are three formats of education provided: structured educational class, interactive small group education and individualised education.

Structured educational class is usually arranged for those with newly diagnosed diabetes. The structured educational class contents include dietary instructions, exercise, medications, monitoring, the importance of adherence, and engaging diabetes on lifestyle modifications, sick day management, hypoglycemia and hyperglycemia symptoms and treatment, pregnancy and travel issues. Peer support groups will be invited to share their experience.

Interactive small group education is usually arranged for those newly started on insulin therapy, or those requiring revision of their insulin therapy. During such small group teaching, patients and carers are given a chance to interact with each other and to share their daily encountered problems as well as ways to solve the problems.

Individualised education is usually arranged for those who do not meet metabolic targets or those with an emotional problem. Diabetes nurse carries out thorough assessment, empowerment and protocol-driven treatment intensification, explores the patient’s emotions and barriers, personalises goal setting, provides resources and continues support.

DIABETES TECHNOLOGY

Diabetes monitoring\(^7\) is a key component in diabetes care management, especially as a way to engage patients and carers in daily living self-care. Real-time continuous glucose monitoring (CGM) system provides every 5 minutes interstitial glucose level (which is correlated with blood glucose). A tiny sensor is inserted into the subcutaneous layer; interstitial glucose data are transmitted to the reader or smartphone.

CGM provides information on immediate glucose level, earlier glucose trend, current direction, and the rate of change by an arrow sign (↗↑↘↓→), thus alerting the patient to take action. There are two types of CGM systems which provide immediate glucose data.

Real-time (rtCGM) System: 即時連續葡萄糖監測系統

This system automatically transmits a continuous stream of glucose data to the user, provides alerts and active alarm, and transmits glucose data (trend and numerical) in real-time to the smartphone.

Intermittently Scanned (isCGM) System: 掃描式葡萄糖監測系統

The system provides the same type of glucose data but requires the user to purposely scan the sensor in order to obtain information; this system does not provide alerts and alarms.

Through instant data and the summary report, patients can understand how daily living (such as diet, exercise, medication and adherence) affects their glucose control. They are hence empowered to take on an active role in self-care diabetes.

Provision of comprehensive care focusing on risk evaluation and patient empowerment needs a team-based integrated care approach, involving not only the physician but also the nurse, dietitian, podiatrist, pharmacist, and physiotherapist. Peer group support\(^7\) is also a must. The patient’s care plan is reviewed on an ongoing basis, and the goal-setting is individualised according to the patient’s personal needs.

References

Venofer® should only be administered where the indication assessment. Venofer® must be used with care in patients who cannot tolerate oral iron therapy or who are non-compliant, or in action inflammatory bowel disease where oral iron preparations are ineffective. Venofer® should only be administered where the indication is confirmed by appropriate laboratory tests. Dosage and Administration: Venofer® has to be administered intravenously by drip infusion, by slow injection or directly into the venous limb of the dialyser and it is not suitable for intramuscular use and for total dose infusion TDI, where the full dose of iron required, representing the patient’s total iron deficit is administered in one complete infusion. The dose of Venofer® is determined by the haemoglobin level and body weight, and must be determined individually for each patient according to the total iron deficit. The total dose per infusion can be represented by appropriate laboratory tests.

Contraindications, Warnings, Overdose: The use of Venofer® is contraindicated in cases of anaemia not caused by iron deficiency, iron overload or disturbances in utilisation of iron, known hypersensitivity to Venofer® or any of its inactive components, and pregnancy first trimester. Parenterally administered iron preparations can cause allergic or anaphylactoid reactions, which may be potentially lethal. In case of hypersensitivity reactions, healthcare professionals should immediately stop the iron administration. In case of a chyle leakage reaction, antihistamines should be administered in the case of a serious anaphylactic reaction. Adrenaline should be administered immediately. Facilities for cardio-pulmonary resuscitation must be available. Venofer® should be administered with care in patients with acute or chronic infection. Hypotensive episodes may occur if the injection is administered too rapidly. Paravenous leakage must be avoided because leakage of Venofer® at the injection site may lead to pain, inflammation, tissue necrosis and brown discoloration of the skin. Interactions: Venofer® should not be administered concurrently with oral iron preparations since the absorption of oral iron is reduced. Pregnancy and lactation: Data on a limited number of exposed pregnancies indicated no adverse effects of iron Sucrose on pregnancy or on the health of the foetus/newborn child. No well controlled studies in pregnant women are available to date. Animal studies do not indicate direct or indirect harmful effects with respect to pregnancy, embryonal/fetal development, parturition or postnatal development of the offspring. Nevertheless, risk/benefit evaluation is required. Venofer® should not be used during pregnancy unless clearly necessary. Treatment should be confined to the second or third trimester, provided the benefits of treatment clearly outweigh the potential serious risks to the fetus. Unwanted effects: Common (1% to <10%): transient taste perversion (in parallel metallic taste). Uncommon (0.1% to <1%): headache, dizziness, hypertension and collapse, tachycardia and palpitations, bronchospasm, dyspnoea, nausea, vomiting, abdominal pain, diarrhoea, pruritus, urticaria, rash, exanthema, urticaria, muscle cramps, malaise, fever, shivering, flushing, chest pain and tightness, injection site disorders such as superficial phlebitis, burning, swelling, sterile abscess (0.1% to <0.1%), anaphylactic reactions, peripheral oedema. Rare (0.01% to <0.01%): paraesthesia, anaphylactoid reactions, crossing, headache, burning, swelling. Rare (0.001% to <0.01%): paroxysmal nocturnal haemoglobinuria, leucocytosis, urticaria, rash, exanthema, urticaria, muscle cramps, malaise, fever, shivering, flushing, chest pain and tightness, injection site disorders such as superficial phlebitis, burning, swelling, sterile abscess (0.01% to <0.001%), anaphylactic reactions, peripheral oedema. Overdose: Overdose can cause acute iron overloading which may manifest itself as haemosiderosis. Overdosage should be treated with supportive measures and, if required, with an iron-chelating agent. Legis classification Part 1, first and third Schedule poisons. Date of preparation: 01/2019. Full prescribing information available upon request. Reference: A. Charney C et al. Am J Kidney Dis 2001; 37: 30-309. B. Miczek A. Wii et al. Nephrol Dial Transplant 2003; 20: 3195-3201. C. Iñigo et al. Nephrol Dial Transplant 2006; 5: 539-544. D. Jaffe J. J. Am. Soc. Nephrol. 2001; 12: 1892-1895. E. B. I. et al. Blood Purif 2008; 26: 151-156. F. Richardson D, Sarri C, WR E, J. Am. Soc Nephrol. 2001; 12: 1892-1895. G. Schaefer D et al. Nephrol Dial Transplant 2006; 21: 2025-2030. H. European Medicines Agency. 2013; E414159; 2002-2006.
INTRODUCTION

Diabetes is the leading cause of chronic kidney disease (CKD). Approximately one-third of patients with diabetic nephropathy progress to end-stage renal disease requiring some form of renal replacement therapy (RRT), which in turn carries an impact on glycaemic control and diabetic care. Reducing further macrovascular complications in dialysis patients and preventing hypoglycaemia improve the quality and length of patients’ life. The care of diabetic patients on RRT is multifaceted and complex. This paper addresses nursing management in diabetic patients receiving RRT, with the aim of improving their clinical outcomes.

Immediately upon beginning dialysis, the patient’s diabetes regimen needs to be reviewed because both peritoneal dialysis (PD) and haemodialysis (HD) each has a different effect on glycaemic control. Conventional PD solution contains glucose as an osmotic agent to achieve fluid removal. Patients receiving PD treatment are exposed to a high glucose load from the solution. Continuous glucose absorption during dialysis (daily 100 - 300 gm) can result in anorexia, weight gain, elevated blood triglyceride levels and, for diabetic patients, hyperglycaemia. A working alliance with patients and caregivers is required to enhance their capacity for self-care. Nursing care is implemented as detailed below:

1. As cardiovascular disease is the leading cause of death, patient empowerment is essential through home blood pressure monitoring and fluid control. Patients and their caregivers are taught fluid management by being shown how to adjust the strength of glucose PD solution and how to control the patient’s diet. Fluid status can be evaluated using a body composition monitor machine. Blood pressure less than 140/90 mmHg is recommended. Regular blood pressure monitoring is important.

2. Patients on PD are more likely to have hyperglycaemia with hyperinsulinemia. They are advised to perform self-monitoring of blood glucose (SMBG), including increasing the frequency of monitoring if needed. They are also educated on the relationship between the effect of PD solution, the action of insulin and its injection schedule. Combining the use of non-glucose based PD solution, such as icodextrin or amino acid containing solution, to reduce glucose exposure may require. The site for insulin injection should be on the area of non-PD catheter insertion and regularly rotated within the same area to reduce variability in absorption. Injection into the hypertrophic and atrophic areas should be avoided. Targeted glycosylated haemoglobin around 7% in diabetic PD patients, and maybe up to 8.5% in patients at risk for hypoglycaemia, is recommended. Patient and caregivers should be referred back to diabetes nurses for further education if there is consistent high blood glucose.

3. If the patient needs to travel whilst they are on PD, pre-travel preparation should be stressed. Information on PD solution ordering and delivery should be provided, and the patient should be advised to continue blood glucose monitoring during travel. Regular insulin before the meal will be added if appetite improves. Prolonged fasting should be avoided. When planning any period of travel, especially international travel, nephrologist’s advice should be sought to discuss the suitability of emptying the abdomen for the long haul. In cases of international travel, it is essential to adjust insulin injections and mealtimes while crossing the time zones.

NURSING MANAGEMENT IN HD

Haemodialysis normally takes place two to three times a week for four to six hours per session to remove toxins and excess water. Hypoglycaemia may occur due to glucose loss to the dialysis solution and diffusion of glucose into erythrocytes. Some HD patients are discouraged from eating during dialysis as this may cause hypotension and increase the risk of further hypoglycaemia. Nursing assessment on HD schedule, episodes of hypotension or hypoglycaemia, medication compliance and mealtime on HD day needs to be carried out to provide individualised care. The recommended nursing interventions are as follows:

1. Diabetes treatment is adjusted according to the prescribed dialysis regimens.

2. Education on SMBG and insulin adjustment, with particular reference to different insulin doses on HD days versus non HD days and the SMBG profile, is required. Dosage for patients taking twice daily injections of premixed insulin needs to be reviewed to determine whether the dose...
needs to be reduced or omitted before dialysis. A smaller dose may be prescribed after dialysis, with the normal dose being given on non-dialysis days.

3. Patients and caregivers need to be taught to differentiate between hypotension and hypoglycaemia. The use of glucose containing dialysis solution to prevent intradialytic hypoglycaemia can be implemented. Re-scheduling of mealtimes on HD days may be required, and administration of a prescribed dose of 50% dextrose solution (D50) during HD can be given if hypoglycaemia occurs.

4. Restriction in potassium intake is necessary. Dietary advice, specifically to eat fruits and vegetables that are lower in the potassium content, and to limit the intake of nuts, is an essential element of care. Fruits and vegetables should also be included in line with normal diabetic diet recommendations. The patient’s medications are reviewed to avoid using drugs that impair renal excretion of potassium.

NURSING MANAGEMENT IN KIDNEY TRANSPLANTATION

Kidney transplantation is the preferred form of RRT for end-stage renal disease. The use of long term immunosuppressive drug treatment may impair glycaemic control due to the side effects of high dose steroids and infection.

Providing safe and effective nursing care can minimise avoidable complications and achieve optimal clinical outcomes. The nurse would:

1. Establish a good rapport with the patient and caregivers to enhance mutual goal setting and regain the patient’s sense of wellbeing.
2. Educate on the relationship between the effect of immunosuppressive drugs and the action of Insulin.
3. Reinforce the necessity of taking immunosuppressants at a consistent time of the day.
4. Emphasise the importance of patient self-adjustment of anti-diabetes treatment, including medication and diet.
5. Educate on preventive measures, warning signs, daily monitoring strategies, and handling procedures for potential complications.
6. Emphasise and educate on the importance of lifestyle modifications such as weight reduction to prevent diabetes and other metabolic complications.
7. Refer patients for regular metabolic complication screening if necessary.

Furthermore, empowering the patient to actively engage in self-management and lifestyle modification and to make informed choices and decisions is important to achieve optimal diabetes and life goals.

A. The strategies on self-care management are implemented as the following:

1. Quitting smoking is strongly encouraged. Referral to a smoking cessation ambassador may be required.
2. Reducing or stopping alcohol drinking is advised.
3. A high fibre diet and regular exercise are encouraged to prevent constipation.
4. Daily SMBG helps to prevent hypoglycaemia and improves glycaemic control. Recording of pre- and post- meals or pre- and post- PD solution exchange is necessary. Patients are educated to recognise and manage hypoglycaemic symptoms and to adjust the diabetes medications accordingly.

B. In addition, the following strategies on lifestyle modification are needed:

1. Encouraging physical activities
 Patients with diabetes on RRT may have lower levels of physical activity because of functional limitations. Despite these limitations, participation in daily physical activity is recommended. Physical activity can improve insulin sensitivity and endothelial function; and reduce inflammatory markers. Moderate-intensity physical activity for a cumulative duration of at least 150 minutes per week or as much as physically tolerable is encouraged. Aerobic or muscle strengthening exercises such as cycling, use of an exercise bike, Tai Chi, or climbing stairs can be performed, and exercise can be incorporated into the general activities of daily living, such as household chores and shopping. Lifting heavy weights should be avoided.

2. Reduction in carbohydrate intake by rearranging eating patterns
 It is suggested to eat vegetables first, then meat, with carbohydrate foods, such as rice or noodles, to follow. Increasing the intake of non-starchy vegetables, decreasing added sugars and refined grains, and choosing more whole foods over refined and highly processed foods can be implemented.

3. Protein and phosphate diet, and salt modification
 3.1 Protein intake
 Dialysis causes a catabolic response. Amino acid loss on PD and HD and high blood urea leads to depressed appetite, increased catabolism, and decreased muscle mass. A higher protein intake of between 1 and 1.2 g protein/kg/day in diabetic patients undergoing dialysis is recommended to avoid hypoglycaemia. Small but frequent meals can also help a reduced appetite. Patients with low blood albumin or persistent poor appetite are referred to a dietician for further assessment.

 3.2 Phosphate intake
 Patients are advised to avoid high phosphate foods such as cereal, internal organs, nuts, and milk products.
3.3 Salt intake

Patients with CKD are often salt sensitive and cannot regulate blood pressure and extracellular fluid volume when salt intake is high. Patients who are accustomed to consuming high sodium intake may need support in changing to a lower-sodium diet, which may require limiting their favourite foods. Using culturally appropriate foods and incorporating a whole-food diet may help break the cycle of adaptation to a highly processed diet. Patients are advised to buy fresh foods, cook at home, and reduce sauces, both at home and when eating out. This can be achieved in restaurants by asking for any sauces, dressings, and gravies to be served in a separate dish. Pineapple juice or unseasonal rice vinegar offer an alternative to salty sauces like soy sauce. Sweet, sour, bitter, and spicy or hot flavours can be used to season food to enhance taste, instead of salt. Patients are advised on the healthiest diet for their condition, focusing on fresh foods over processed foods, and promoting liaising with a diettian.

Patients and caregivers are educated to read food labels and choose lower-salt brands when possible. The goal is < 2 g of sodium or 5 g of table salt daily. Patients who are salt-sensitive are advised to choose fresh foods, avoid salty processed foods, and reduce sauces, both at home and when eating out. This can be achieved in restaurants by asking for any sauces, dressings, and gravies to be served in a separate dish. Pineapple juice or unseasonal rice vinegar offer an alternative to salty sauces like soy sauce. Sweet, sour, bitter, and spicy or hot flavours can be used to season food to enhance taste, instead of salt. Patients are advised on the healthiest diet for their condition, focusing on fresh foods over processed foods, and promoting liaising with a diettian.

CONCLUSION

Optimal management of the diabetic patient with diabetes receiving RRT is a complex, multidisciplinary, cross-functional team effort. Establishing a comprehensive programme including renal and diabetes nursing care is essential to reduce further complications and to improve quality of life, thus optimising the patient’s clinical outcomes.

References

HDx Therapy may Improve PROs related to Quality of Life

Dialysis patients experience a severe burden of physical and emotional symptoms such as Restless Leg Syndrome (RLS), pruritis, dizziness and headaches.\(^1\)

Expanded Hemodialysis (HDx) has emerged as a promising therapy to help patients alleviate these symptoms, thereby allowing them a better quality of life with improved sleep, decreased itching symptoms, dizziness.\(^2\)

Impact to QoL

Chronic renal patients experience poor quality of life due to the symptoms of end-stage renal disease, accompanied by the physical and emotional burdens of their treatments. RLS, which is commonly observed in these patients, compromises a patient’s quality of life—especially when it occurs in its most severe form and is accompanied by depressive symptoms.\(^3\)

A large observational registry study in prevalent HD patients found that after 6 months of HDx therapy there was found to be an approximate 50% reduction in the number of patients meeting RLS criteria.\(^4\)
Sleep well

Pruritus is a predictor of poor sleep. Together with the physical and emotional burden of end-stage renal disease, it severely impacts a patient's quality of life.¹

Lim et al. show in a randomized controlled trial (RCT) that even if at baseline, the morning pruritus intensity was worse in the medium cut-off (MCD) group compared with the high-flux group, this difference was not observed after 12 weeks of HDx therapy.³

After 12 weeks of HDx therapy, patients experienced less symptoms of morning pruritus and less frequent sleep disturbances caused by pruritus-related scratching.⁴

Reduce breathlessness and dizziness

Health-related quality of life is a patient-reported outcome that considers a dialysis patient's point of view and supports the evaluation of outcomes and healthcare quality.

Research from Alarcon JC et al. shows an improved dialysis symptom index (DSI) after 6 months of HDx therapy. All 30 DSI items, each targeting a specific physical or emotional symptom, were reported with marginally significant reductions in shortness of breath, dizziness/light-headedness, and difficulty falling asleep.⁵

Learn more about HDx Therapy today:

- Randomized Controlled Trial of Medium Cut-Off versus High-Flux Dialyzers on Quality of Life Outcomes in Maintenance Hemodialysis Patients.
- Impact of Medium Cut-Off Dialyzers on Patient-Reported Outcomes (PROMs): COREH Registry.

References
As a Renal Transplanted Diabetic, How Did I Help Myself?

Ms Maggie MM NG
Vice-Chairperson, Hong Kong Kidney Foundation

I had suffered end-stage renal failure since 1985 and luckily underwent renal transplantation in 1986, following which my life returned to normal. But I would never forget my diet restrictions during the haemodialysis months before the transplantation.

In 1992, I was pregnant; everything went smoothly, although my condition was described as a high-risk pregnancy. However, I started to have high blood pressure at week 19 and gestational diabetes at week 32. I needed to restrict my diet again and even needed to inject insulin. Six weeks passed. The baby was born, and my blood sugar was back to normal. My worries seemed gone.

A few years later, I was diagnosed as a diabetic again. It was a tragic news to me. No matter how well I kept my renal function, I was deemed a sufferer of one more chronic disease “diabetes”. The disease seems to have no symptoms, but I must control my diet thereafter. It is really a punishment for a person who loves food so much. I tried to convince myself: diabetes is better than renal failure; the treatment is only through oral medication and at times insulin injection rather than renal dialysis. I encouraged myself to face one more chronic disease just like how I faced renal failure. I fully understand I will get along with two diseases till my life ends. I reminded myself that I must manage two diseases with the same attitude. I need to make ‘friends’ with them. I should try to learn more about the disease, such as its complications and treatments. Honestly speaking, I need to have the determination to do disease management.

Controlling my blood sugar and keeping it stable is the main task of my diabetes management. I prick my fingertip with a lancet most of the days; dropping my blood on the test kit to check my blood sugar sounds simple but in practice it is hard work. The ten fingertips become painful after years of checking. However, I must check to see if my blood sugar level is too low or too high. It is also a checkbox to see if my eating is right or wrong. As a diabetic, I always keep my blood sugar test kit, medicine and insulin with me. This “tool kit” is especially important when I travel abroad since I am not sure whether I can buy them in foreign countries. If I run into a shortage of the instrument and medicine, it could be life-threatening.

Besides the blood test, I use the sensor to check blood sugar as well. For accuracy, I will cross check the sensor with the blood test to find the true figure. The sensor is more convenient for me to check blood sugar when I am on my own, to see if they are too high or too low. The sensor can help me to decide whether to add insulin or take in some sugar in different situations. From my experience, Thai food, Vietnamese food and even Cantonese Yum Chai are at high risk of blood sugar surges. All kinds of starchy food, desserts and fruits are evil to diabetics. I will limit the consumption and will avoid them all.

Diabetes management involves a close relationship with the medical professional. I must have a diary with my blood sugar record. A steady follow up. A full set of blood tests including the HbA1C. I will undertake a full assessment for diabetic complications. Diabetic complications can be life-threatening. I cannot accept myself suffering from heart disease, blindness, limbs amputation …

Exercise is good for controlling blood sugar level. I have the pleasant experience of seeing my blood sugar level lowered after exercise. I will inject less insulin, and it will benefit my health as well.

Diabetes is troublesome; however, it is, and can be, manageable.
This 25-year-old lady developed multiple discrete skin-coloured papules over her cheeks (Fig. 1). These lesions were asymptomatic, but they slowly increased in number over a few years. She was told in a beauty salon that these were infectious warts.

Questions
1. What are your clinical diagnosis and differential diagnoses?
2. How can you confirm the diagnosis?
3. What is your treatment for these lesions?

(See P.41 for answers)
<table>
<thead>
<tr>
<th>Sunday</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Zoom Lecture Do Older Adults Require Enhanced Influenza Vaccines? - Online</td>
<td>* Certificate Course on Renal Medicine 2021 (Video Lectures)</td>
<td>* Zoom Lecture Empowering Heart Failure Treatment: the EMPEROR of SGLT2 Inhibition (Sodium-glucose contransporter-2 Inhibition) – Online</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Certificate Course on Complaint Management 2021 (Video Lectures)</td>
<td>The Hong Kong Neurosurgical Society Monthly Academic Meeting – To be confirmed</td>
<td>* Zoom Lecture Certificate Course for GPs 2021 - Update on Management of Prostate Cancer - Online</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Zoom Lecture Spirit of Understanding and Parenting Skills for ADHD Children during the COVID-19 Pandemic - Online</td>
<td>* Zoom Lecture Stroke Prevention and Emergency Management: How to Optimize Atrial Fibrillation (AF) Management for your Patients? - Online</td>
<td>* Zoom Lecture Recent Update of Treatment of Respiratory Infectious Disease - Online</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Certificate Course on Complaint Management 2021 (Video Lectures)</td>
<td>* Certificate Course on Respiratory Medicine 2021 (Video Lectures)</td>
<td>Certificate Course on Renal Medicine 2021 (Video Lectures)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Zoom Lecture HKMA-GHK CME Programme Topic Update on Minimally invasive spine surgery - Online</td>
<td>* Certificate Course on Renal Medicine 2021 (Video Lectures)</td>
<td>FMSHK Executive Committee Meeting</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Zoom Lecture Patient Benefit on Inhaled Corticosteroids Usage in Post COVID Era - Online</td>
<td>* Certificate Course on Respiratory Medicine 2021 (Video Lectures)</td>
<td>* Zoom Lecture The Missing Puzzles? Holistic Management of Cardiorenal Disease with Diabetes - the CalleMe Approach - Online</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HighVolumeHDF®

From Promise to Proof

Improving survival & patient well-being with Cardioprotective Haemodialysis.
<table>
<thead>
<tr>
<th>Date / Time</th>
<th>Function</th>
<th>Enquiry / Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Wed 20:00 PM</td>
<td>Zoom Lecture Do Older Adults Require Enhanced Influenza Vaccines? - Online</td>
<td>HKMA CME Dept. Tel: 2865 0943 1 CME Point</td>
</tr>
<tr>
<td>7:00 PM</td>
<td>Certificate Course on Respiratory Medicine 2021 (Video Lectures)</td>
<td>Ms. Antonia Lee Tel: 2527 8898</td>
</tr>
<tr>
<td>1 Thu 20:00 PM</td>
<td>Certificate Course on Renal Medicine 2021 (Video Lectures)</td>
<td>Ms. Candice Tong Tel: 2865 0943 1 CME Point</td>
</tr>
<tr>
<td>7:00 PM</td>
<td>Zoom Lecture Empowering Heart Failure Treatment: the EMPEROR of SGLT2 Inhibition (Sodium-glucose contransporter-2 Inhibition) – Online</td>
<td>Ms. Candice Tong Tel: 2865 0943 1 CME Point</td>
</tr>
<tr>
<td>7:00 PM</td>
<td>Certificate Course on Complaint Management 2021 (Video Lectures)</td>
<td>Ms. Candice Tong Tel: 2865 0943 1 CME Point</td>
</tr>
<tr>
<td>9 Thu 20:00 PM</td>
<td>Certificate Course for GPs 2021 - Update on Management of Prostate Cancer - Online</td>
<td>Ms Elise Haw Tel: 2660 7720 1 CME Point</td>
</tr>
<tr>
<td>20:00 PM</td>
<td>Zoom Lecture Myths of Coughing in Children - GP Perspective - Online</td>
<td>Ms Candice Tong Tel: 2865 0943 1 CME Point</td>
</tr>
<tr>
<td>7:00 PM</td>
<td>Certificate Course on Renal Medicine 2021 (Video Lectures)</td>
<td>Ms. Candice Tong Tel: 2865 0943 1 CME Point</td>
</tr>
<tr>
<td>10 Fri 20:00 PM</td>
<td>Long-term Care after Percutaneous Coronary Intervention (PCI) - Online</td>
<td>Ms. Candice Tong Tel: 2865 0943 1 CME Point</td>
</tr>
<tr>
<td>14 Tue 20:00 PM</td>
<td>Zoom Lecture Spirit of Understanding and Parenting Skills for ADHD Children during the COVID-19 Pandemic - Online</td>
<td>Ms. Candice Tong Tel: 2865 0943 1 CME Point</td>
</tr>
<tr>
<td>7:00 PM</td>
<td>Certificate Course on Complaint Management 2021 (Video Lectures)</td>
<td>Ms. Candice Tong Tel: 2865 0943 1 CME Point</td>
</tr>
<tr>
<td>15 Wed 20:00 PM</td>
<td>Zoom Lecture Stroke Prevention and Emergency Management: How to Optimize Atrial Fibrillation (AF) Management for your Patients? - Online</td>
<td>Ms. Antonia Lee Tel: 2865 0943 1 CME Point</td>
</tr>
<tr>
<td>7:00 PM</td>
<td>Certificate Course on Respiratory Medicine 2021 (Video Lectures)</td>
<td>Ms. Antonia Lee Tel: 2865 0943 1 CME Point</td>
</tr>
<tr>
<td>16 Thu 20:00 PM</td>
<td>Zoom Lecture Recent Update of Treatment of Respiratory Infectious Disease - Online</td>
<td>Ms. Antonia Lee Tel: 2865 0943 1 CME Point</td>
</tr>
<tr>
<td>7:00 PM</td>
<td>Certificate Course on Renal Medicine 2021 (Video Lectures)</td>
<td>Ms. Antonia Lee Tel: 2865 0943 1 CME Point</td>
</tr>
<tr>
<td>8:00 PM</td>
<td>FMSHK Executive Committee Meeting</td>
<td>Ms. Antonia Lee Tel: 2865 0943 1 CME Point</td>
</tr>
<tr>
<td>21 Tue 20:00 PM</td>
<td>Zoom Lecture HKMA-GHK CME Programme</td>
<td>HKMA CME Dept. Tel: 2865 0943 1 CME Point</td>
</tr>
<tr>
<td>7:00 PM</td>
<td>Certificate Course on Complaint Management 2021 (Video Lectures)</td>
<td>Ms. Candice Tong Tel: 2865 0943 1 CME Point</td>
</tr>
<tr>
<td>23 Thu 20:00 PM</td>
<td>Zoom Lecture Patient Benefit on Inhaled Corticosteroids Usage in Post COVID Era - Online</td>
<td>Ms. Antonia Lee Tel: 2865 0943 1 CME Point</td>
</tr>
</tbody>
</table>
FEBRUCIS® IS NON-INFERIOR TO ALLOPURINOL FOR CV ADVERSE EVENTS IN GOUT PATIENTS ≥60 YEARS WITH 1 CV RISK FACTOR

Study Design
The FAST (For Gout Study) was a prospective, randomized, controlled trial of Feburic versus allopurinol in patients with gout who were at least 60 years of age with at least one clinical CV risk factor. Patients were randomized to receive a 11 or 22 mg dosing regimen of Feburic or 100 mg of allopurinol once daily for 12 weeks. The primary endpoint was the incidence of CV adverse events in the primary analysis (CV events defined as non-fatal MI, non-fatal stroke, or CV death). A significant reduction in the number of CV events was noted for Feburic versus allopurinol (p = 0.011). The results of the FAST study are consistent with those of the FORCAST study, which demonstrated a significant reduction in CV events with Feburic compared to allopurinol in patients with gout and at least one CV risk factor.

Background
Feburic (febuxostat) is a Selective Xanthine Oxidase Inhibitor (XOI) that targets the root cause of gout by lowering serum uric acid levels and reducing the risk of gout flares. Feburic is indicated for the management of gout in patients ≥60 years of age with at least one CV risk factor.

NEW LABEL AVAILABLE

DECLARE A BETTER TOMORROW
Forxiga® - Your Cardio-renal Guardian

FOR TODAY

START TODAY

BEST OUTCOME TOMORROW

Largest CVOT of SGLT2i
with the broadest population from multiple risk factors to established ASCVD**

Forxiga®
Reduction in cardiorespiratory events observed in 7200 patients†

J17%
CV death or hospitalisation for HF

J24%
Cardiovascular composite endpoint

J47%
Renal-specific composite endpoint

Reassured safety profile of Forxiga

Forxiga®
AstraZeneca Hong Kong Limited
Tel: +852 2575 3333
Fax: +852 2575 3331

Forxiga®
AstraZeneca

Forxiga®
AstraZeneca
HISTORY
In September 1962, a group of orthopaedic surgeons came together and formed the Hong Kong Orthopaedic Club. With the effort of Prof Hodgson, the Club Chairman, and all the other founding members, an inaugural meeting was held on 4 November 1965. Since then, the Hong Kong Orthopaedic Association (HKOA) was formally established. Prof Hodgson was voted into the office as the first President of the HKOA, and Dr Arthur Yau was being elected as the first Honorary Secretary.

MISSIONS
The HKOA aims to promote the science, art and practice of orthopaedic surgery and its allied disciplines. We determine to develop, support, and augment the education of individuals who are engaged in the practice of orthopaedic surgery for the public benefit. We also strive to support the research and education on orthopaedic medicine and therapy.

SUBSPECIALTY CHAPTERS
Orthopaedic surgery has been rapidly growing and developing with more and more diversification. In response to the advancement of orthopaedic knowledge and surgical technology, five subspecialty chapters have been formed under the HKOA. They are the Sports Medicine Chapter, the Foot and Ankle Chapter, the Spine Chapter, the Adult Joint Reconstruction Chapter and the Paediatric Orthopaedics Chapter. Each of these subspecialty chapters are operated by their own chapter council and under the supervision of the HKOA. Academic activities, including seminars and hands-on practical workshops are regularly organised by the chapters for our fellows and members.

HONG KONG ORTHOPAEDIC ASSOCIATION ANNUAL CONGRESS
Since 1981, the HKOA Annual Congress has always been the annual highlight event as well as the important platform in sharing our clinical research and practice with both the local and international orthopaedic community. Distinguished guests and scholars are invited every year to join the Congress and enlighten us with their clinical experience, research findings and up-to-date knowledge.

With the great effort of our Annual Congress Co-Chairmen, Dr Wong Tak-Man and Dr Edmund Yau, as well as the Organising Committee, our 41st HKOA Annual Congress will be held on 6 - 7 November 2021 at the Hong Kong Convention and Exhibition Centre. The theme of this year is “Challenges in Orthopaedics - COVID-19 and Beyond”.

INTERNATIONAL COLLABORATION
Ambassador programme with other national orthopaedic Associations has been established since 1988. We are inviting ambassadors from our overseas sister associations to join our Annual Congress every year, while we send our fellows and members in exchange for their scientific meetings. Through this exchange program, we are building friendship, exchanging ideas as well as establishing a connection with the international orthopaedic communities.

Dr WONG Yau-bun
President, the Hong Kong Orthopaedic Association
Answers to Dermatology Quiz

Answers:

1. Clinically, the most likely diagnoses include syringoma and trichoepithelioma. The other differential diagnoses include colloid milium, eccrine hidrocystoma, trichofolliculoma, plane wart, and other benign adnexal tumours.

2. The only way to confirm the diagnosis is by doing a small punch biopsy for histopathology. Clinically it is difficult to be certain about the definitive diagnosis of these adnexal neoplasms. However, just like this lady, most patients are reluctant to have a biopsy on the face because of the unwanted scar after the biopsy. Plane warts are excessively and wrongly diagnosed in Hong Kong nowadays, especially by beauticians and aesthetic doctors.

Syringoma and trichoepithelioma are two relatively common benign adnexal tumours over the cheeks. Though the final diagnosis relies on histopathology, some useful clinical clues might be useful in differentiating between the two conditions. In general, the lesions of syringoma tend to be smaller, more flat-topped, and with a yellowish pink hue, cystic and translucent. Syringoma is more evenly distributed over cheeks and eyelids, and can be generalised in eruptive type, affecting the neck, anterior chest, abdomen and genitalia, while trichoepithelioma is moreover cheeks and nasolabial area. Positive family history will favour trichoepithelioma, as it can be inherited in autosomal dominant mode via mutation in the CYLD gene, while syringoma is usually sporadic.

3. Both syringoma and trichoepithelioma are harmless benign, slowly growing adnexal tumours. Treatment, if necessary, is usually for aesthetic reasons. The options include carbon dioxide laser, radiofrequency, electrocautery and trichloroacetic acid. Cryosurgery generally is unsatisfactory and might cause disfiguring pigmentary changes over the face. All these treatment modalities have the potential risk of scarring and subsequent medico-legal disputes. The recurrent rate is also high due to the partial removal of the lesions.

Dr Lai-yin CHONG
MBBS(HK), FRCP(Lond, Edin, Glasg), FHKCP, FHKAM(Med)
Specialist in Dermatology & Venereology
Once-daily TRESIBA®: Ultra-long duration of action\(^1,2\)

WHEN IT IS TIME FOR BASAL INSULIN

CHOOSE TRESIBA® FIRST

- Successful reductions in HbA1c\(^3,4\)
- Lower risk of hypoglycemia versus glargine U100 \(^5,7\)
- Flexibility in day-to-day dosing time when needed...
delivered in a once-daily dose.\(^1\)
- Significantly lower day-to-day variability in glucose-lowering effect vs glargine U100 and U300 \(^8,9\)
- Approved for a broad range of patients\(^18\)

DEVET Trial

In 7,637 patients with type 2 diabetes at high risk of cardiovascular events:

- At baseline, mean age was 65 years.
- Diabetes duration was 16.4 years.
- HbA1c was 8.6%, and 83.9% were on insulin therapy.

Severe hypoglycaemia

40% significant rate reduction (\(p<0.001\))

Nocturnal severe hypoglycaemia

53% significant rate reduction (\(p<0.001\))

\(^*\) Once-daily (OD) \+ add additional anti-diabetic treatments in accordance with standard of care.

A treatment of diabetes mellitus in adults, adolescents and children from the age of 1 year, elderly patients, renal and hepatic impairment patients.

Tresiba® OD

VS

Glargine U100 OD

Further information is available from Novo Nordisk Hong Kong Ltd.

Unit 93A-93B, 1/F, Trade Square, 841 Cheung Sha Wan Road, Kowloon, Hong Kong SAR, China

Tel: (852) 2387 8555 Fax: (852) 2386 0800 www.novonordisk.com

TNI-11200203120