Clinical Pharmacology
STRUGGLING TO CONTROL ELEVATED LDL-C?

When you and your patients are fighting to take back cholesterol control, add on oral, once daily

![Image](image-url)

* Avoid concomitant use of Nilemdo®/Nustendi® with simvastatin >20 mg or with pravastatin >40 mg.*

† vs placebo on top of maximally tolerated statins, with or without other oral lipid-lowering therapies. An up to 17% LDL-C reduction on top of maximally tolerated statin therapy with around 50% of studied patients on high-intensity statins. † An up to 28% LDL-C reduction was observed in patients on no statin, very low-intensity or low-intensity statin therapy, with or without other non-statin lipid lowering therapies.*

‡ vs placebo on top of maximally tolerated statins,*

‡ vs placebo on top of maximally tolerated statins, with or without other oral lipid-lowering therapies. An up to 17% LDL-C reduction on top of maximally tolerated statin therapy with around 50% of studied patients on high-intensity statins. An up to 28% LDL-C reduction was observed in patients on no statin, very low-intensity or low-intensity statin therapy, with or without other non-statin lipid lowering therapies.*

† vs placebo on top of maximally tolerated statins, with or without other oral lipid-lowering therapies. An up to 17% LDL-C reduction on top of maximally tolerated statin therapy with around 50% of studied patients on high-intensity statins. An up to 28% LDL-C reduction was observed in patients on no statin, very low-intensity or low-intensity statin therapy, with or without other non-statin lipid lowering therapies.*

References:
1. Nilemdo Hong Kong Package Insert Mar 2023
2. Nustendi Hong Kong Package Insert Mar 2023
5. Lau AF et al. J Am Heart Assoc. 2019;8:e011662

LDL-C: low-density lipoprotein cholesterol.

Abbreviated Prescribing Information

Nilemdo® (bempedoic acid) tablets 180 mg. Indications: Nilemdo is an adenosine triphosphate-citrate lyase (ACL) inhibitor indicated as an adjunct to diet and maximally tolerated statin therapy for the treatment of adults with heterozygous familial hypercholesterolemia or established atherosclerotic cardiovascular disease who require additional lowering of LDL-C. Dosage and Administration: Administer 180 mg orally once daily with or without food. Contraindications: None. Warnings and Precautions: Hyperuricemia: May increase blood uric acid levels. Assess uric acid levels periodically as clinically indicated. Monitor for signs and symptoms of hyperuricemia, and initiate treatment with urate-lowering drugs as appropriate. Tendon Rupture: Nilemdo is associated with an increased risk of tendon rupture or injury. Discontinue Nilemdo at the first sign of tendon rupture. Avoid Nilemdo in patients who have a history of tendon disorders or tendon rupture. Pregnancy and lactation: None.

Nustendi® (bempedoic acid and ezetimibe) tablets 180 mg bempedoic acid/10 mg ezetimibe. Indications: Nustendi is indicated as an adjunct to diet and maximally tolerated statin therapy for the treatment of adults with heterozygous familial hypercholesterolemia or established atherosclerotic cardiovascular disease who require additional lowering of LDL-C. Dosage and Administration: Administer one tablet (180 mg bempedoic acid and 10 mg ezetimibe) orally once daily with or without food. Swallow the tablet whole. Contraindications: None. Warnings and Precautions: Hyperuricemia: May increase blood uric acid levels. Assess uric acid levels periodically as clinically indicated. Monitor for signs and symptoms of hyperuricemia, and initiate treatment with urate-lowering drugs as appropriate. Tendon Rupture: Increased risk of tendon rupture or injury. Discontinue Nustendi at the first sign of tendon rupture. Avoid Nustendi in patients who have a history of tendon disorders or tendon rupture. Pregnancy and lactation: None.

Adverse Reactions:

Most common: upper respiratory tract infection, musculoskeletal pain, headache, arthralgia, back pain, abdominal pain or discomfort, bronchitis, rash, body weight decreased, diarrhea, dizziness, injection site reaction, myalgia, upper respiratory tract infection, upper respiratory tract infection.

Others include tendon rupture, gout, hyperuricemia, benign prostatic hyperplasia, atrial fibrillation.

Drug Interactions:

Avoid concomitant use of Nilemdo with simvastatin greater than 20 mg. Pravastatin. Avoid concomitant use of Nilemdo with pravastatin greater than 40 mg. Cyclosporine: Monitor cyclosporine concentrations. Fibrates: If cholelithiasis is suspected in a patient receiving Nustendi and fenofibrate, consider alternative lipid-lowering therapy. Cyclosporine: Monitor cyclosporine concentrations. Fibrates: If cholelithiasis is suspected in a patient receiving Nustendi and fenofibrate, consider alternative lipid-lowering therapy.

Contraindications:

Known hypersensitivity to ezetimibe tablets.

Dosage and Administration:

Administer one tablet orally once daily with or without food. Swallow the tablet whole. Co-administration with bile acid sequestrants: Administer at least 4 hours after bile acid sequestrants. Contraindications: Known hypersensitivity to ezetimibe tablets. Warnings and Precautions: Hyperuricemia: May increase blood uric acid levels. Assess uric acid levels periodically as clinically indicated. Monitor for signs and symptoms of hyperuricemia, and initiate treatment with urate-lowering drugs as appropriate. Tendon Rupture: Increased risk of tendon rupture or injury. Discontinue Nustendi at the first sign of tendon rupture. Avoid Nustendi in patients who have a history of tendon disorders or tendon rupture. Pregnancy and lactation: None.

Adverse Reactions:

Most common: upper respiratory tract infection, musculoskeletal pain, headache, arthralgia, back pain, abdominal pain or discomfort, bronchitis, rash, body weight decreased, diarrhea, dizziness, injection site reaction, myalgia, upper respiratory tract infection, upper respiratory tract infection.

Others include tendon rupture, gout, hyperuricemia, benign prostatic hyperplasia, atrial fibrillation.

Drug Interactions:

Avoid concomitant use of Nustendi with simvastatin greater than 20 mg. Pravastatin. Avoid concomitant use of Nustendi with pravastatin greater than 40 mg. Cyclosporine: Monitor cyclosporine concentrations. Fibrates: If cholelithiasis is suspected in a patient receiving Nustendi and fenofibrate, consider alternative lipid-lowering therapy. Cyclosporine: Monitor cyclosporine concentrations. Fibrates: If cholelithiasis is suspected in a patient receiving Nustendi and fenofibrate, consider alternative lipid-lowering therapy.
Contents

Editorial
- Editorial
 Prof Elaine CHOW
 2

Medical Bulletin
- Recent Advances in Lipid Therapy
 Prof Brian TOMLINSON & Prof Elaine CHOW
 6
- MCHK CME Programme Self-assessment Questions
 9
- Understanding Clinical Trials to Implement Data-driven Integrated Care - A Perspective of Clinical Pharmacologist and Endocrinologist
 Prof Juliana CN CHAN & Prof Andrea LUK
 11
- Novel Treatments of Obesity – 1G, 2G, or 3G?
 Dr Paul CH LEE
 19
- Drug-Induced Cardiac Arrhythmias; A Focused Update and Emerging Clinical Challenges
 Dr Will YH CHAN
 25

Dermatology Quiz
- Dermatology Quiz
 Dr CHONG Lai-yin
 23

Medical Diary of November
 31

Calendar of Events
 33

Disclaimer
All materials published in the Hong Kong Medical Diary represent the opinions of the authors responsible for the articles and do not reflect the official views or policy of the Federation of Medical Societies of Hong Kong, member societies or the publisher.

Publication of an advertisement in the Hong Kong Medical Diary does not constitute endorsement or approval of the product or service promoted or of any claims made by the advertisers with respect to such products or services.

The Federation of Medical Societies of Hong Kong and the Hong Kong Medical Diary assume no responsibility for any injury and/or damage to persons or property arising from any use of execution of any methods, treatments, therapy, operations, instructions, ideas contained in the printed articles. Because of rapid advances in medicine, independent verification of diagnoses, treatment method and drug dosage should be made.

The Cover Shot
The front cover features “The Tree of Life”, drawn by Matthew, aged 9. Many of the modern drugs that we use today are derived from plants—digoxin from Digitalis purpurea or the common foxglove; phlorizin in the apple bark is a natural sodium glucose co-transporter inhibitor. Aspirin or acetyl-salicylic acid was derived from salicin in the willow bark. Plants may hold the key to new drugs that are waiting to be discovered. We have recently witnessed a series of climate catastrophes from wildfires that have burnt down islands, cities that floods have swept away. This lone tree is a symbolic reminder of our duty to protect our fragile environment and safeguard it for future generations.

The Tree of Life
Mr Matthew CHIU

Scan the QR-code To read more about The Federation of Medical Societies of Hong Kong
Editorial

Prof Elaine CHOW
MBChB, MRCP, FRCP (Lond), FHKAM
Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong

Issue Editor

We have experienced an unprecedented pandemic on a global scale that has touched everyone’s lives. As we recover from the COVID-19 pandemic, we reflect on the lessons learnt. The pandemic has forced us to re-examine the complex interrelationships between man, nature and science. Vaccines and drugs against COVID-19 were developed, tested, approved, and applied clinically at previously unthinkable speeds. At the same time, we observed scepticism and mistrust in science, pharma and politics while vast quantities of health-related information, sometimes false, were propagated through the internet and social media at lightning speed.

Clinical pharmacology rests at the interface between drug discovery, development and implementation. Armed with knowledge of the pharmacology and mechanisms of actions of new compounds, it is the duty of clinical pharmacologists to make sure drugs are adequately tested for safety in humans. However, it is still taking months to years for new drugs to become accessible to the patient. We have seen growing numbers of guidelines and consensus documents that quickly recommend new treatments. Nevertheless, the “implementation gap” remains significant in many areas of medicine. Considerations of cost-effectiveness and equitable access to drugs are also within the remit of clinical pharmacologists.

In this issue, Prof Juliana Chan will discuss the importance of clinical trials and how everyday clinicians should be involved in research, without which medicine cannot advance. The ultimate benefits to the patient, clinicians and the healthcare system outweigh short-term costs and investment. While at times are probably the single most important drug accounting for the significant decline in cardiovascular disease in the past decade, we now have alternatives such as bempedoic acid and newer modalities that push lipid-lowering to new boundaries. Prof Brian Tomlinson will take us through the latest advances in lipid-lowering therapies. Similarly, we have seen glucagon-like-peptide 1 based therapies evolve from single to potent multi-agonists, which can achieve up to 20% body weight loss. Dr Paul Lee will share some landmark trials and safety data for this emerging class of anti-obesity drugs. Finally, Dr Will Chan will highlight the anti-arrhythmic potential of many commonly encountered drugs and management tips.

As the Editor of this issue, I hope this collection of articles will inspire our readers on the relevance of clinical pharmacology to all walks of medicine. "The Tree of Life", featured the front cover of this issue, reminds us of the plant-based origins of many of our drugs. It also reminds us of the duty of clinical pharmacologists to make sure drugs are adequately tested for safety in humans. Considerations of cost-effectiveness and equitable access to drugs are also within the remit of clinical pharmacologists. The ultimate benefits to the patient, clinicians and the healthcare system outweigh short-term costs and investment. While at times are probably the single most important drug accounting for the significant decline in cardiovascular disease in the past decade, we now have alternatives such as bempedoic acid and newer modalities that push lipid-lowering to new boundaries. Prof Brian Tomlinson will take us through the latest advances in lipid-lowering therapies. Similarly, we have seen glucagon-like-peptide 1 based therapies evolve from single to potent multi-agonists, which can achieve up to 20% body weight loss. Dr Paul Lee will share some landmark trials and safety data for this emerging class of anti-obesity drugs. Finally, Dr Will Chan will highlight the anti-arrhythmic potential of many commonly encountered drugs and management tips.

As the Editor of this issue, I hope this collection of articles will inspire our readers on the relevance of clinical pharmacology to all walks of medicine. "The Tree of Life", featured the front cover of this issue, reminds us of the plant-based origins of many of our drugs. It also reminds us of the duty of clinical pharmacologists to make sure drugs are adequately tested for safety in humans. Considerations of cost-effectiveness and equitable access to drugs are also within the remit of clinical pharmacologists. The ultimate benefits to the patient, clinicians and the healthcare system outweigh short-term costs and investment. While at times are probably the single most important drug accounting for the significant decline in cardiovascular disease in the past decade, we now have alternatives such as bempedoic acid and newer modalities that push lipid-lowering to new boundaries. Prof Brian Tomlinson will take us through the latest advances in lipid-lowering therapies. Similarly, we have seen glucagon-like-peptide 1 based therapies evolve from single to potent multi-agonists, which can achieve up to 20% body weight loss. Dr Paul Lee will share some landmark trials and safety data for this emerging class of anti-obesity drugs. Finally, Dr Will Chan will highlight the anti-arrhythmic potential of many commonly encountered drugs and management tips.
RAPID K⁺ REDUCTION¹,²
SUSTAINED K⁺ CONTROL¹,³
NOW IN YOUR HANDS

Predictable K⁺ Reduction²,⁴
- Efficacious across multiple patient types²
- Unique lattice structure provides high affinity for K⁺ ions⁴

Effective in Acute and Long-Term K⁺ Control¹,³
- Rapid serum K⁺ reduction within 1 hour with single dose¹,²
- 88% achieved normokalemia within 48 Hours (Median time: 2.2 Hours)¹,²
- Sustained K⁺ control for up to 1 year¹,³

Generally Well-Tolerated¹,³
- Safety and tolerability demonstrated in several clinical trials¹,³

Convenient Once-Daily Maintenance Dosing¹

AstraZeneca Hong Kong Limited
Unit 12 & 13, 17/F, King Kong Road, North Point, Hong Kong
Tel: 852-2424-7166 Fax: 852-2422-4786

References:

Lokelma® is a registered trademark of the AstraZeneca group of companies.
INTRODUCTION

Several new therapeutic agents have been developed to target lipid disorders in recent years. These include not only oral treatments and combinations of oral drugs, but also the new approaches with monoclonal antibodies (mAbs) and RNA based therapeutics with antisense oligonucleotide (ASO) and small interfering RNA (siRNA) compounds (Fig. 1)1.

Low-density lipoprotein cholesterol (LDL-C) remains the primary target for lipid treatment2, but it has been recognised that the remnant cholesterol carried in triglyceride-rich lipoproteins (TRLs) also contributes to atherosclerosis and lipolysis of triglycerides may result in inflammatory or thrombotic effects3. Non-high-density lipoprotein cholesterol (non-HDL-C) includes the cholesterol carried in TRLs and is considered an alternative or secondary target for treatment.

Triglyceride levels of < 1.7 mmol/L (150 mg/dL) are considered to indicate lower cardiovascular (CV) risk, and this corresponds to a remnant cholesterol level of 0.8 mmol/L so the target for non-HDL-C can be calculated by adding 0.8 mmol/L to the LDL-C target (Table 1)4.

Table 1. Corresponding non-high-density lipoprotein cholesterol and apolipoprotein B levels for commonly used low-density lipoprotein cholesterol goals4,5.

<table>
<thead>
<tr>
<th>Cardiovascular risk</th>
<th>LDL-C</th>
<th>Non-HDL-C</th>
<th>Apolipoprotein B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate</td>
<td>2.6 mmol/L</td>
<td>3.4 mmol/L</td>
<td>100 mg/dL</td>
</tr>
<tr>
<td></td>
<td>(100 mg/dL)</td>
<td>(131 mg/dL)</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>1.8 mmol/L</td>
<td>2.6 mmol/L</td>
<td>80 mg/dL</td>
</tr>
<tr>
<td></td>
<td>(70 mg/dL)</td>
<td>(100 mg/dL)</td>
<td></td>
</tr>
<tr>
<td>Very high</td>
<td>1.4 mmol/L</td>
<td>2.2 mmol/L</td>
<td>65 mg/dL</td>
</tr>
<tr>
<td></td>
<td>(55 mg/dL)</td>
<td>(85 mg/dL)</td>
<td></td>
</tr>
</tbody>
</table>

Non-HDL-C = non-high-density lipoprotein cholesterol; LDL-C = low-density lipoprotein cholesterol.
For triglycerides, < 1.7 mmol/L (150 mg/dL) is considered to indicate lower risk.

TREATMENT FOR LOW-DENSITY LIPOPROTEIN CHOLESTEROL

Statins remain the first line treatment to reduce LDL-C and CV risk, and if moderate or high dose statin is not sufficient to achieve LDL-C goals, lipid guidelines recommend adding ezetimibe6. Statins are a very safe group of medications. The serious side effect of severe myopathy or rhabdomyolysis is very uncommon. It is usually associated with the use of excessive doses inappropriate for the patient or drug interactions, which occur mainly with simvastatin and other
drugs which inhibit cytochrome P450 (CYP) 3A4/5 and interact with simvastatin and to a lesser extent atorvastatin. Gemfibrozil inhibits drug transporters, CYP2C8 and glucuronidation pathways and interacts with most statins. Cyclosporine shows greater interactions through CYP enzymes and transporters. An appropriate maximum dose of statin should be chosen for individual patients. Plasma concentrations of rosvustatin are twice as high in Chinese and Japanese patients compared to Caucasians, and the 40 mg dose of rosvustatin was not approved in Japan, China or Korea and we suggest it should be avoided in all Chinese populations. For simvastatin, there is a recommendation from the clinical pharmacogenomics implementation consortium to perform genotyping for solute carrier organic anion transporter family member 1B1 (SLCO1B1) if doses of more than 20 mg are expected to be used, but this is not often done. It may be safer and more effective to add ezetimibe to a moderate intensity statin dose rather than using the maximum approved statin dose.

Treatments to reduce LDL-C that have the final effect of increasing expression of the LDL receptors (LDLRs) include statins, ezetimibe, and proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors (Table 2). Recently, bempedoic acid has been approved in the U.S. and Europe. Bempedoic acid inhibits ATP-citrate lyase (ACL), an enzyme upstream of 3-hydroxy-3-methylglutaryl-Coenzyme A (HMG-CoA) reductase, the target of statins, in the cholesterol synthesis pathway. It is administered as an oral prodrug that is activated in the liver, but not in skeletal muscle, by very long-chain acyl-CoA synthetase-1 (ACSVL1). It is, therefore, unlikely to cause muscle problems. It was shown to reduce CV events in statin intolerant patients in the CLEAR Outcomes study, and it can reduce LDL-by C by about 30 %, or 20 %, on top of statins. Its major role may be to treat statin intolerant patients, although true intolerance to statins is relatively uncommon. It is available in a combination tablet with ezetimibe, and this could be used as an addition to statin before adding the more expensive injectable PCSK9 therapies if a further modest reduction in LDL-C is required to reach the target.

Table 2. Effects of lipid lowering treatments on low-density lipoprotein cholesterol

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Average LDL-C reduction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate intensity statin</td>
<td>30 %</td>
</tr>
<tr>
<td>High intensity statin</td>
<td>50 %</td>
</tr>
<tr>
<td>High intensity statin plus ezetimibe</td>
<td>65 %</td>
</tr>
<tr>
<td>PCSK9 inhibitor</td>
<td>60 %</td>
</tr>
<tr>
<td>PCSK9 inhibitor plus high intensity statin</td>
<td>75 %</td>
</tr>
<tr>
<td>PCSK9 inhibitor plus high intensity statin plus ezetimibe</td>
<td>85 %</td>
</tr>
</tbody>
</table>

LDL-C = low-density lipoprotein cholesterol

With the addition of the PCSK9 inhibitors, almost all patients can reach the LDL-C targets apart from those with homozygous familial hypercholesterolaemia (HoFH). The mAbs, evolocumab and alirocumab, can reduce LDL-C by 60 % on average and have few adverse effects apart from occasional mild injection site reactions. The siRNA inclisiran is also effective in reducing LDL-C by an average of 50 %, and it can be given at six monthly intervals after the first two doses, which should improve adherence to therapy. There are no adverse safety signals identified with inclisiran so far, and the ORION-4 CV outcome study should be completed within the next few years.

Patients with HoFH should be offered treatment with high intensity statin, ezetimibe and PCSK9 inhibitors. They will generally require additional treatments such as LDL apheresis, lomitapide or mipomersen. Lomitapide inhibits microsomal triglyceride transfer protein in the liver and intestine and reduces the output of chylomicrons and VLDL particles, which in turn may result in accumulation of triglycerides in the intestine and the liver and cause gastrointestinal and liver adverse effects. Recent data suggest these adverse effects can be managed by dosage reduction and tolerability becomes satisfactory, but the drug is extremely expensive. Mipomersen is a second generation ASO targeting apoB. It is not well tolerated with severe injection site reactions and flu like symptoms, and it is not generally available nowadays.

Evinacumab is a fully human mAb which targets angioptien-like protein 3 (ANGPTL3). It was found to be effective in reducing LDL-C in patients with HoFH, including those with no functional LDLRs. ANGPTL3 inhibits lipoprotein lipase (LPL) and also endothelial lipase, and it appears to reduce LDL-C in patients without active LDLRs by an endothelial lipase-dependent uptake of apoB-containing particles into the liver. It has been approved for HoFH in Europe and the U.S. but is also extremely expensive. ANGPTL3 inhibitors may reduce HDL-C, which may limit their wider application.

TREATMENT FOR HYPERTRIGLYCERIDAEMIA

Patients with elevated triglycerides can be divided into those with severe hypertriglyceridaemia with plasma triglycerides ≥ 10 mmol/L (900 mg/dL) in European guidelines or ≥ 500 mg/dL (≥ 5.6 mmol/L) in American guidelines, where the major immediate risk is for acute pancreatitis, or those with lower levels where the TRLs contribute to CV risk. It is important to address diet and lifestyle, and managing underlying conditions, particularly diabetes and obesity, should be optimised for all patients with high triglycerides. For those with severe hypertriglyceridaemia, treatments with fibrates and/or omega-3 fatty acids are recommended to reduce the triglyceride levels to < 500 mg/dL to reduce the risk of pancreatitis. Several formulations of omega-3 fatty acids are approved for this, including combinations of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and it may be necessary to increase the dose up to 4 g/day. Most fibrates will also effectively reduce triglycerides by up to 50 % or more.

In the most severe cases, such as familial chylomicronaemia syndrome (FCS), due to homozygous loss-of-function mutations in the gene for LPL or associated proteins, it may not be possible to achieve adequate control of triglyceride levels to reduce the risk of acute pancreatitis and new drugs are in development to target this.
Volanesorsen is an ASO targeting apoC-III, and in patients with FCS it reduced apoC-III levels by 84 % and triglycerides by 77 %12. A mild degree of thrombocytopenia was a common adverse event. Volanesorsen appears to work through a pathway which is independent of LPL, and reducing apoC-III appears to facilitate the uptake of lipid particles through the LDL family of receptors including LDLR-related protein 1 (LRP1) and possibly hepatic heparan sulfate proteoglycan receptors, such as syndecan-113. Volanesorsen was approved in Europe for FCS but not in the U.S. Other drugs targeting apoC-III are in development including olezarsen which is a triantennary N-acetylgalactosamine (GalNAc) conjugated ASO targeting apoC-III, and the siRNA ARO-APOC3. These may have a wider indication than volanesorsen, but apoC-III inhibition may increase LDL-C in some patients.

For patients with milder degrees of hypertriglyceridaemia, the European lipid guidelines recommend treating the LDL-C to goal initially with statins and other LDL-C lowering treatments if necessary. In primary prevention patients or high-risk patients who are at LDL-C goals with triglycerides > 2.3 mmol/L (> 200 mg/dL), fenofibrate or bezafibrate may be considered in combination with statins5. In high-risk patients with persistently elevated triglycerides of 1.5 - 5.6 mmol/L (135 - 499 mg/dL) despite statin treatment, the addition of omega-3 fatty acids (icosapent ethyl 2 x 2 g daily) is recommended.

In the FIELD (Fenofibrate Intervention and Event Lowering in Diabetes study) trial in diabetic patients not initially on statin treatment, fenofibrate showed CV benefits in some subgroups, including those with low HDL-C14. It also reduced the need for laser treatment for diabetic retinopathy by 31 % and amputation events by 34 %15,16. In the ACCORD (Action to Control Cardiovascular Risk in Diabetes) study in patients with diabetes on simvastatin, fenofibrate only showed benefits in the subgroup with HDL-C ≤ 34 mg/dL and triglycerides ≥ 204 mg/dL17. In the ACCORD Follow-On Study (ACCORDION) after treatment cessation, the benefit of fenofibrate persisted in this subgroup with dyslipidaemia18.

The PROMINENT (Pemafibrate to Reduce Cardiovascular Outcomes by Reducing Triglycerides in Patients with Diabetes) study with pemafibrate 0.2 mg twice daily was designed to test the effect of a fibrate in the patients predicted to benefit who had type 2 diabetes with triglyceride levels 200 - 499 mg/dL (2.26 - 5.64 mmol/L) and HDL-C levels ≤ 40 mg/dL (1.03 mmol/L) with LDL-C levels at target on moderate or high intensity statin therapy19. The trial was stopped early because CV events had no benefit. Triglycerides and very-low-density lipoprotein (VLDL) cholesterol were reduced by about 26 % and apoC-III by 28 %, but LDL-C increased by 12.3 %, apoB increased 4.8 % and there was no change in non-HDL-C.

This result reflects genetic studies showing that triglyceride-lowering genetic variants in LPL and LDL-C-lowering variants in LDLR lower the risk of coronary heart disease per unit difference in apoB, and the clinical benefit of lowering triglyceride and LDL-C levels may be proportional to the absolute change in apoB20. A meta-regression analysis of clinical trials of lipid-lowering drugs, including the ACCORD and FIELD studies with fenofibrate, showed the risk ratio for major vascular events was related to reduction in non-HDL-C with triglyceride lowering treatments21. Therefore, with no change in non-HDL-C and a small increase in apoB in the PROMINENT study, it might be predicted there would be no CV benefit.

The main effect of pemafibrate in the PROMINENT study appears to be the activation of LPL with increased conversion of VLDL to LDL particles without increasing the overall clearance of apoB containing particles from the circulation. This may be related to the phenotype of the patients involved and the background therapy with moderate or high intensity statin. Pemafibrate was developed to be more selective than other fibrates and to avoid the elevations in creatinine and liver enzymes sometimes seen with fibrates, and it differs from other fibrates, such as fenofibrate, in various ways22,23. Therefore, it may not be appropriate to extrapolate the results from trials with pemafibrate to other fibrates.

The benefit of fenofibrate in addition to statin has been assessed in recent population-based cohort studies in Korea. In the ECLIPSE-REAL (Evaluation of Cardiovascular events on Korean dyslipidemic Patients with fenofibrate treatment in the REAL world) propensity matched cohort study of adults with metabolic syndrome, participants receiving statin plus fenofibrate had 26 % reduction in composite cardiovascular events compared to those using statin only treatment and in those with low HDL-C (≤ 0.88 mmol/L) or high triglycerides (≥ 2.23 mmol/L) the reduction was 36 %24.

In another propensity-matched study from the same group in Korea, statin-plus-fenofibrate therapy was associated with a significant 12 % lower risk of diabetic retinopathy progression compared to statin monotherapy in patients with type 2 diabetes and metabolic syndrome25.

Another population-based cohort study from Korea investigated the effects of fenofibrate add-on to statin treatment in participants who had already used statins and had high triglyceride levels (≥ 150 mg/dL)26. Compared to fenofibrate non-users, fenofibrate users had a significant 17 % reduction in all-cause death and 7 % reduction in CV disease, and the benefits were consistent in those with diabetes and the 73 % without diabetes. The benefits were greater in those who used fenofibrate for over a year.

Recent trials with omega-3 fatty acids showed a significant 25 % reduction in a composite of CV events in high-risk patients with a purified formulation of EPA (icosapent ethyl 4 g daily) in REDUCE-IT (Reduction of Cardiovascular Events with Icosapent Ethyl Intervention Trial)27, but no benefit with a combined carboxylic acid formulation of EPA and DHA 4 g daily in STRENGTH (Long-Term Outcomes Study to Assess Statin Residual Risk with Epanova in High Cardiovascular Risk Patients with Hypertriglyceridemia)28.
Questions have been raised regarding the choice of placebo in these studies, which was mineral oil in REDUCE-IT and corn oil in STRENGTH. In an analysis of the Copenhagen General Population Study (CGPS) to mimic the active and comparator groups in REDUCE-IT and STRENGTH, it was concluded that the contrasting results of these studies could partly be explained by a difference in the effect of comparator oils (mineral vs corn), but not of active oils (EPA vs EPA + DHA), on lipid traits and C-reactive protein.

Current guidelines recommend icosapent ethyl in patients who have reached LDL-C targets on statins but have elevated fasting triglyceride levels in the range of 1.5 to 5.6 mmol/L (135 to 499 mg/dL), as seen in the REDUCE-IT study.

CONCLUSIONS

Treatment to target LDL-C levels is the mainstay of lipid management. Statins are still the first line therapy, and ezetimibe or PCSK9 inhibitors should be added if LDL-C goals are not achieved. Bempedoic acid provides another option that has recently been approved. For elevated triglycerides, fibrates and/or omega-3 fatty acids can be used if the levels are very high (> 10 mmol/L). Icosapent ethyl is recommended for lower levels of fasting triglycerides. Fenofibrate may be an alternative, especially in patients with diabetes and retinopathy, but it would be prudent to check that non-HDL-C or apoB are reduced if a fibrate is added to reduce CV risk.

For the very rare condition of HoFH, treatments with lomitapide or evinacumab may be available in some countries and for the equally rare condition of FCS, volanesorsen has been approved in Europe.

References

2 DOSES A YEAR*
FOR EFFECTIVE AND SUSTAINED LDL-C REDUCTION†

In ORION-10 (N=1,561), LEQVIO® demonstrated LDL-C reduction in patients with established ASCVD.

\[
\text{Mean LDL-C at baseline was 2.7mmol/L.}
\]

\[
\text{PLACEBO + Standard of Care}
\]

\[
\text{LEQVIO® + Standard of Care}
\]

\[
\text{\% CHANGE LDL-C FROM BASELINE}
\]

\[
\text{M O N T H S}
\]

\[
\text{52%}
\]

Patients in both study arms were on a maximally tolerated statin.1,4

In ORION-10 clinical trial, LEQVIO® demonstrated LDL-C reduction in ASCVD patients.4

Between-group difference of 52.3% (96% CI): 55.7% - 48.8%, P<0.001) refers to the difference between the placebo group (1.0%) and the LEQVIO® group (53.1%) at month 17.

†LDL-C is reduced initially, peaks at 3 months, and then remains within every 6 months.

LDL-C reduction was maintained during each 6 month dosing interval.1

Study design: ORION-10 was a multinational, double-blind, randomized, placebo-controlled 18-month clinical trial. Patients with established ASCVD were taking a maximally tolerated dose of statin with or without other lipid-lowering therapy and required additional LDL-C reduction. The ORION-10 trial, in addition to patients with ASCVD, included adults who were at risk of atherosclerotic plaque rupture or atherosclerotic vascular event of ASCVD as assessed by the Framingham Risk Score for Cardiovascular Disease or equivalent.

1. LEQVIO® (inclisiran) injection 284 mg/1.5 mL.

2. FDA APPROVED2

3. EMA APPROVED3

Abbreviations: ASCVD, atherosclerotic cardiovascular disease; CI, confidence interval; LDL-C, low-density lipoprotein cholesterol.

Important Notes: Before prescribing, consult full prescribing information. Presentation: Solution for injection: Each prefilled syringe contains 1.5 mL of solution containing 284 mg of inclisiran. Solution is clear to slightly opalescent and colorless to slightly yellow.

Indications: LEQVIO® is indicated in adults with primary hypercholesterolemia (familial hypercholesterolemia and mixed dyslipidemia) as an adjunct to diet and other lifestyle changes to reduce elevated LDL cholesterol levels in combination with a statin to achieve and maintain optimal LDL cholesterol levels.

Method of administration: Reconstituted dose of inclisiran must be administered as a single subcutaneous injection every 6 months. Instruct patients to press the plunger to ensure proper dosing. Assign for use by calibrated pump. A pump is necessary for patients with aseptic fluid access for the inclisiran (inclisiran). Precautions: Use in patients with severe hepatic impairment (Child-Pugh class C). Inpatients with possible hepatic impairment patients with severe hepatic impairment is not recommended. The dosing regimen is recommended for administration by a healthcare professional. For subcutaneous injection into the abdomen, outer abdomen should include the upper arm or thigh. Injections should not be given in the same area of skin disease or injury such as sunburns, and testing, or active or chronic infection. Do not administer to patients with high or low body mass index (BMI). Do not administer to patients with impaired hepatic function. Do not administer to patients with impaired renal function. Do not administer to patients with impaired cardiac function. Do not administer to patients with impaired respiratory function.

MCHK CME Programme Self-assessment Questions

Please read the article entitled “Recent Advances in Lipid Therapy” by Prof Brian TOMLINSON and Prof Elaine CHOW and complete the following self-assessment questions. Participants in the MCHK CME Programme will be awarded CME credit under the Programme for returning completed answer sheets via fax (2865 0345) or by mail to the Federation Secretariat on or before 30 November 2023. Answers to questions will be provided in the next issue of The Hong Kong Medical Diary. (Address: Duke of Windsor Social Service Bldg., 4/F, 15 Hennessy Rd., Wan Chai. Enquiry: 2527 8898)

Questions 1-10: Please answer T (true) or F (false)

1. A low-density lipoprotein cholesterol (LDL-C) target of less than 1.4 mmol/L is appropriate for patients at a very high cardiovascular risk.
2. Non-HDL-C and apolipoprotein B levels are alternative treatment targets for lipid lowering therapies.
3. High intensity statin plus ezetimibe may achieve an average reduction of LDL-C by 65%.
4. The clinical pharmacogenomics implementation consortium recommends genotyping for solute carrier organic anion transporter family member 1B1 (SLCO1B1) before starting atorvastatin in all patients.
5. Bempedoic acid is an oral prodrug activated in the liver but not in skeletal muscle.
6. Rosuvastatin 40 mg daily is contraindicated in East Asians.
7. The siRNA inclisiran must be given monthly in patients with homozygous familial hypercholesterolemia (HoFH).
8. Both fenofibrate and pemafibrate have been shown to reduce cardiovascular events in randomised controlled trials.
9. Volanesorser targets angiopoietin-like protein 3 (ANGPTL3) and is effective in treating homozygous FH.
10. Fibrates and omega-3 fatty acids are approved for reducing the risk of pancreatitis in patients with severe hypertriglyceridaemia.

ANSWER SHEET FOR NOVEMBER 2023

Please return the completed answer sheet to the Federation Secretariat on or before 30 November 2023 for documentation. 1 CME point will be awarded for answering the MCHK CME programme (for non-specialists) self-assessment questions.

Recent Advances in Lipid Therapy

Prof Brian TOMLINSON
BSc (Lond), MBBS (Lond), MD (Lond), FRCP (Lond, Edin, Glasg), FHKCP, FACP, FHKAM (Medicine)
Professor, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China

Prof Elaine CHOW
MBChB, MRCP, FRCP (Lond), FHKAM
Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong

Recent Advances in Pleural Medicine

Prestigious Location for Medical Specialists

8 Argyle Street, Mongkok, Kowloon

Leasing Enquiry: 2879 2181 / 2879 2189 medical@langhamplace.com.hk

- Perfect location atop MTR station
- Flexible layout from around 1,000 sf
- Professional building management
- One and Only Grade A office in vicinity
- Advanced building specifications
- Fresh air intake & exhaust*

*technically feasible; subject to availability
Understanding Clinical Trials to Implement Data-driven Integrated Care - A Perspective of Clinical Pharmacologist and Endocrinologist

Prof Juliana CN CHAN
Department of Medicine and Therapeutics
Hong Kong Institute of Diabetes and Obesity
Clinical Research Management Office

Prof Andrea YO LUK
Department of Medicine and Therapeutics
Hong Kong Institute of Diabetes and Obesity
Phase 1 Clinical Trial Centre
The Chinese University of Hong Kong
Prince of Wales Hospital, Shatin, Hong Kong

INTRODUCTION

Complexity is a key feature in internal medicine. For the same disease, different people can have different clinical presentations. For the same clinical presentation, different people can have different underlying causes. For the same treatment, different people can have different responses. While there are now many diagnostic and therapeutic technologies, doctors are trained to bring out the best of these technologies through their understanding of human biology, clinical medicine and appropriate use of different technologies, notably drugs, for prevention and treatment purposes through good medical practice.

GOOD MEDICAL PRACTICE

According to the General Medical Council of the United Kingdom, good medical practice describes what it means to be a good doctor:

• Make the care of his/her patient his/her first concern
• Be competent and keep his/her professional knowledge and skills up to date
• Take prompt action if he/she thinks patient safety is being compromised
• Establish and maintain good partnerships with his/her patients and colleagues
• Maintain trust in the profession by being open, honest and acting with integrity

Good medical practice starts with comprehensive history taking and physical examination followed by relevant investigations to create a priority list of differential diagnoses, taking into consideration the clinical context. Making a correct diagnosis puts the patient on the right path of receiving the right intervention to achieve the right outcomes. This should be supplemented by patient empowerment, including the nature of the diagnosis, aetiologies, prognosis and treatment options with benefit-risk ratios to promote informed decision-making.

PRACTICE ENVIRONMENT AND DOCTOR-PATIENT RELATIONSHIP

Globally and in Hong Kong, 70 % of all deaths are due to noncommunicable diseases (NCDs). The latter is defined by the World Health Organization as cancer, respiratory disease, cardiovascular disease and diabetes. These patients require chronic care, including regular assessments, drugs and education to prevent silent deterioration, which can lead to multiple morbidities with recurrent hospitalisations and premature death. To achieve this, a stable and good doctor-patient relationship supported by allied healthcare workers with access to technologies in an environment conducive to good medical practice is critically important.

CLINICAL PHARMACOLOGY AND QUALITY PHARMACEUTICAL CARE

Drugs are one of the most important armaments physicians use to help their patients. The premise for developing clinical pharmacology as a subspecialty in internal medicine is to promote the appropriate use of medicine in order to maximise benefits and minimise harm. According to the British Pharmacology Society, clinical pharmacology encompasses all aspects of the relationship between drugs and humans. It is the only medical specialty that focuses on the safe, effective and economical use of medicines with an aim to sustain and advance best healthcare relevant to all specialties.

DRUG DISCOVERY AND TRANSLATION

Traditionally, many clinical pharmacologists work in the academia with clinical expertise in a subject, e.g. hypertension. They are practising physicians and teach undergraduate and postgraduate students while conducting early and late phase clinical trials in healthy volunteers and patients, essential for the development of a novel drug. Drug development begins with the discovery of a disease pathway and related proteins, which form drug targets for the synthesis of molecules/compounds or peptides/proteins aimed at correcting the disease pathway.

Since 1993, the Human Genomic Project led by the United States National Institute of Health has sequenced the genomes of thousands of individuals, which have provided the basis for many genetic studies aimed at discovering single nucleotide polymorphisms (SNPs) or sequences associated with different human diseases. These discoveries are interpreted in the context of phenotypes (i.e. observable traits), which have to be
defined by physicians with a good understanding of the clinical course of a particular disease. These complex databases, including phenotypes and multiomic data, are analysed jointly by scientists with expertise including but are not limited to human biology, clinical medicine, chemistry and bioinformatics. The ultimate goal is to improve our understanding of causes, trajectories and consequences of diseases as well as discover druggable pathways with minimal off-target side effects for possible translation to therapeutic agents, accompanied by biomarkers for diagnostic, classification and prognostic purpose. These drug targets need to undergo pre-clinical and clinical evaluation for registration by a regulatory agency. Once marketed, these drugs will undergo continuing evaluation by gathering real-world evidence in support of their safety and clinical effectiveness, including cost-effectiveness.

DRUG DEVELOPMENT AND CLINICAL TRIALS

The discovery of a drug with therapeutic potential is followed by extensive pre-clinical evaluation in cell-based and animal models, including pharmacology, toxicology and mutagenicity, before they are formulated for clinical development (e.g. tablets, injections). In the early phase (phase 1) study, healthy volunteers are usually involved in examining the pharmacokinetic profile, i.e. what the body does to the drug through absorption, distribution, metabolism and excretion (ADME). These properties are often evaluated in special patient groups, e.g., the elderly and those with impaired liver and kidney function, for dose adjustment. Once a drug level is achieved with an optimal regimen (i.e. dose and frequency), its effects on the body (pharmacodynamic), e.g. reducing blood pressure, will be examined in patient groups at different stages of the targeted disease in clinical trial settings (phase 2 - 4).

Complex diseases, such as NCD, are characterised by the clustering of risk factors and complications due to the perturbation of multiple biological pathways. Both upstream (causes) and downstream (mediators or modifiers) factors can affect the clinical course. Thus, understanding the epidemiology of the disease (e.g. annual event rates) or natural variation of a disease marker (e.g. blood pressure and blood glucose), as well as the effect size of a drug and its variance, is essential for calculating the sample size of the trial aimed at reducing the event rate or improving the disease marker. Once these outcome measures and sample size are defined a priori, the hypothesis will be tested during the clinical trial in order to support their registration for a particular therapeutic claim. Approximately only 10% of drugs that were tested in phase 1 clinical trials successfully completed all phases of clinical trials and received regulatory approval. Reasons for withdrawing the drug from further evaluation include unacceptable side effects, lack of efficacy, poor pharmacokinetic properties, or commercial consideration.

Given the many factors that can influence the clinical course, adherence to a protocol with pre-defined inclusion and exclusion criteria, procedures and care processes, along with systematic documentation of concomitant medications, investigations and clinical events are essential in assessing the independent effects of a drug on a specific outcome. Since perception biases of both trial implementers (e.g. doctors and nurses) and participants (patients) may influence their behaviours (e.g. prescribing, counselling or adherence), which can affect clinical outcomes, these drugs are often compared against look-alike placebo without active ingredients.

Clinical trial participants usually receive the best of care in order to demonstrate the added values of these new drugs, which may also be compared against standard therapy to demonstrate its non-inferiority or superiority. To ensure the safety of the participants, timely reporting of any adverse events, notably serious adverse events including hospitalisation, major events and death, to the ethics board, regulatory agency and sponsors is essential. These adverse effects are regularly reviewed by a safety monitoring committee, which has the right
to discontinue the study in the event of futility or clear benefits or harm. Finally, to increase the generalisability of these trial results, multi-centre randomised placebo-controlled trials are now the gold standard in the evaluation of an investigational new drug (IND).

GOOD CLINICAL PRACTICE (GCP) AND STANDARD OF OPERATIONS (SOP)

The 3R principle of clinical trial refers to the process of randomisation, which aims to balance both measured and unmeasured variables between the intervention and control/comparative group at baseline, the record of all relevant processes and data during the conduct of the trial for adjustment during analysis and retention of participants to avoid biased conclusion due to attrition with unknown status of the outcome measure.

Good clinical practice in a clinical trial setting refers to adherence to standards of operation (SOP) for maintaining ethical standards, data integrity and patient safety. To achieve these standards, a large multidisciplinary team, including but not limited to doctors, nurses, monitors, technologists and statisticians, governed by a scientific steering committee and an independent safety monitoring committee, is necessary. These RCTs are approved by institutional research ethics boards with the signing of written informed consent forms by trial participants to protect their safety and interest. Due to the large resource implications, it has been estimated that at least USD 1 - 2 billion is required to develop a novel drug. The patent period for a novel drug lasts for 20 years, when 10 - 15 years are needed to gather sufficient safety and efficacy data for regulatory approval. Upon registration, the developer will need to use the remaining 5 -10 years to recuperate their investment, often including that for other drugs that have failed in other pre-clinical and clinical development programmes.

FROM CLINICAL TRIALS TO PROTOCOL-DRIVEN CARE

We have long observed that patients benefitted from participation in a clinical trial beyond effects related to the new drug intervention. The use of a clinical trial protocol delivered by a doctor-nurse team with regular monitoring to ensure treatment adherence, in part driven by a stable doctor-patient relationship in a trial setting, can independently reduce adverse clinical events. Our group first reported the benefits of protocol-driven care during a nifedipine versus enalapril trial in patients with type 2 diabetes and hypertension conducted in the early 1990s. During an 8-year period, compared to patients matched for age, sex and disease duration without hypertension managed in the usual care setting, the trial participants had 50 - 80 % risk reduction in major events and death rates.

In the RENAAL study which compared the renoprotective effects of losartan, an angiotensin receptor blocker (ARB), versus placebo in patients with type 2 diabetes and chronic kidney disease, analysis of participants in Hong Kong revealed marked attenuation in the rate of decline of kidney function upon entry into the trial which was translated to a delay or mitigation of the need for renal replacement therapy.

Subsequent quasi-experimental studies and multi-centre randomised controlled trials (RCT) confirmed the benefits of using a doctor-nurse or doctor-pharmacist team to treat patients with diabetic kidney disease to multiple treatment targets, including the use of organ protective drugs, notably statins and renin angiotensin system inhibitors, on reducing the risk of end stage kidney disease by 50 - 60 %.

In a meta-analysis on the effectiveness of quality improvement programmes aimed at reducing blood glucose, blood pressure and blood cholesterol in patients with type 2 diabetes, initiatives targeting the care system (e.g. task delegation and providing relay using assistants or technology to improve doctor-patient communication) and patients...
ATR-CM, a life-threatening and progressive disease that is widely and frequently underdiagnosed1,2

25% of adults aged 80 years or older were found to have significant myocardial TTR amyloid deposition at autopsy2

What is ATR-CM?2
- A type of cardiac amyloidosis
- Can occur as either wild type or hereditary type
- Progressive and life-threatening
- When the protein transthyretin misfolds, fibril deposits build up in the heart causing ATR-CM

Please visit www.vyndamax.com.hk to learn more about ATR-CM and how you can save the lives of potential ATR-CM patients.

Red Flags
The following warrant your immediate attention3-4:

Cardiac:
- HfP EF2
- LVH on Echo2
- Imaging and ECG discrepancy2 "Imaging finding of LVH and normal/low GFR voltage on ECG"

Non-cardiac:
- Orthopaedic syndromes (e.g., carpal tunnel syndrome, lumbar spinal stenosis and bicep tendon rupture)2
- Polyneuropathy2
- Family history of TTR amyloidosis2

Abbreviations: ACEI: Angiotensin-converting enzyme inhibitors; ARB: Angiotensin-receptor blockers; ATR-CM: Transthyretin amyloid cardiomyopathy; BB: Beta blockers; ECG: Electrocardiogram; Echo: Echocardiography; HF: Heart failure; HfP EF: Heart failure with preserved ejection fraction; LVH: Left ventricular hypertrophy; TTR: Transthyretin

Vyndamax ABBREVIATED PRESCRIBING INFORMATION

1. TRADE NAME: Vyndamax\textregistered capsules (Tafamidis 60 mg). 2. PRESENTATION: Eleng soft capsules. 3. INDICATIONS: Vyndamax is indicated for the treatment of wild-type or hereditary transthyretin amyloidosis in adult patients with cardiomyopathy (ATR-CM). 4. DOSAGE. The recommended dose is one capsule of Vyndamax 60 mg (tafamidis orally once daily). 5. CONTRAINDICATIONS: Hypersensitivity to the active substance or to any of the excipients of the drug (Please refer to the full prescribing information for details). 6. WARNINGS & PRECAUTIONS: Women of childbearing potential should use appropriate contraception when taking tafamidis and continue to use appropriate contraception for 1 month after stopping treatment with tafamidis. Tafamidis should be added to the standard of care for the treatment of patients with transthyretin amyloidosis. Physicians should monitor patients and continue to assess the need for other therapy, including the need for organ transplantation, as part of this standard of care. Tafamidis should be discontinued in patients who undergo organ transplantation. 7. INTERACTIONS: Substrates of efflux transporters BCRP (breast cancer resistant protein, e.g., methotrexate, rosuvastatin, atazanavir); substrates of uptake transporters OAT1 and OAT3 (organic anion transporters, e.g., non-steroidal anti-inflammatory drugs, bumetanide, furosamide, lamivudine, methotrexate, oselamicot, tenofovir, ganciclovir, adenosine diphosphate ribozidurine, raltegravir); 8. PREGNANCY AND LACTATION: Tafamidis is not recommended during pregnancy and in women of child-bearing potential not using contraception. Tafamidis should not be used during breast-feeding. 9. SIDE EFFECTS: Flu-like and liver function test increased. A causal relationship has not yet been established. Reference: Prescribing Information HK PI (Version July 2020) Date of preparation: Nov 2020 Identifier number: VNX1120 FULL PRESCRIBING INFORMATION IS AVAILABLE UPON REQUEST.
Market leader in Hong Kong

Over 40 years of experience

Team of 17 fee earners

Team includes two registered doctors, a pharmacist and a registered nurse (ICU)

Our Partners

Chris Howse
Partner
Tel: +852 2803 3600
chris.howse@howsewilliams.com

David Kan
Partner
Tel: +852 2803 3658
david.kan@howsewilliams.com

Bernard Murphy
Partner
Tel: +852 2803 3667
bernard.murphy@howsewilliams.com

Oonagh Toner
Partner
Tel: +852 2803 3697
oonagh.toner@howsewilliams.com

Alison Scott
Partner
Tel: +852 2803 3604
alison.scott@howsewilliams.com

Maureen Liu
Partner
Tel: +852 2803 3667
maureen.liu@howsewilliams.com

Carmen Fung
Partner
Tel: +852 2803 3610
carmen.fung@howsewilliams.com

Hiu Yee Chung
Partner
Tel: +852 2803 3752
hiuyee.chung@howsewilliams.com

www.howsewilliams.com
enquiries@howsewilliams.com
+852 2803 3688
(e.g. education and self-management) had the largest effect size12.

These studies emphasised the importance of integrating structured protocols, standard procedures, regular assessment, patient empowerment, treatment-to-target and monitoring of outcomes delivered by a trained team (e.g. nurse, pharmacist, healthcare assistant) led by an expert physician to implement evidence-based practice. This structured approach to care ensures that both care providers and patients are informed, aligned and engaged to achieve positive outcomes through self-management, timely intervention and appropriate use of drugs. The ultimate goal is to prevent hospitalisations, morbidities and premature mortality2, 13, 14.

Establishing a disease register is a core component of this data-driven integrated care model. Using diabetes as an example, in 1995, the Chinese University of Hong Kong Diabetes Research and Care Team first set up the Hong Kong Diabetes Register at the Prince of Wales Hospital as a data-driven quality improvement programme. In this initiative, we relocated the care setting from the busy clinic to a diabetes centre, improved the workflow, designed protocols and trained nurses and healthcare assistants to use structured procedures and simple equipment to perform blood, urine, eye and feet examination. These data were used to create a database for risk stratification and care triage. The data were also used to issue a personalised report to empower the patients regarding their own risk profiles for reinforcing self-management, while the doctors were given timely information to avoid therapeutic inertia. Given the reality that most patients are being followed up by different doctors in different settings, this structured assessment performed every 18 - 24 months provides quality assurance, patient empowerment and continuation of care, which has been proven to be life- and cost-saving2, 15-17.

![Fig. 3. Components for quality structured care inspired by principles adopted during the conduct of clinical trials (Adapted from reference 14).](image)

In some settings like Hong Kong which has a universal health care system supplemented by a territory-wide electronic medical record (EMR), these registers can be used to create real-world evidence on the pattern of drug usage and their cost-effectiveness in real-world practice16-21 to complement RCT efficacy data in a controlled setting. Importantly, these databases with structured data collection, e.g. the Hong Kong Diabetes Surveillance Database, curated from the Hospital Authority EMR22-25, have provided a rich resource for ongoing epidemiological analysis on changing disease patterns and secular trends of outcomes to inform practice and policies. From a research perspective, these registers can potentially be used to identify patients who fulfil various inclusion and exclusion criteria for enrolment into RCTs for evaluation of novel drugs or patients with certain risk profiles (e.g. diabetic kidney disease) who may benefit from targeted intervention or additional support26-29.

NEW HORIZON FOR CLINICAL PHARMACOLOGY AND ENDOCRINOLOGY

In Hong Kong, some of these initiatives of using registers and protocol-driven care to improve the quality of pharmaceutical care have been initiated by clinical pharmacologists inspired by the conduct of clinical trials. In this light, clinical pharmacologists are also trained to minimise prescribing errors, de-prescribing ineffective medications, promote adherence with prescriptions and minimize risk of adverse drug reactions. Apart from designing, coordinating, participating, analysing and reporting clinical trials, many of them also take on additional roles in formulating drug policies or regulation of new drug approval7, 30.

Supported by the vision of the Hong Kong Government to develop biotechnology and value-based healthcare to increase the competitiveness of the city, there is an opportunity to revitalise specialities like clinical pharmacology and endocrinology, which share common goals of using quality pharmaceutical care to prevent multi-organ damage. Despite its silent nature, diabetes and NCD are the leading causes of premature death, morbidities and hospitalisations. To make our healthcare sustainable, there is an urgent need for practising physicians who stand between patients and technologies to take the lead and transform our practice environment and team structure to deliver data-driven, integrated, team-based care in order to prevent the preventable2.

For physicians who yearn for a better understanding of disease mechanisms and the development of new treatments, clinical pharmacology and endocrinology provide enormous opportunities for research and development of new therapeutics, treatment strategies and care models. In recent years, the Hong Kong Government has invested enormously in genomic medicine and data science to promote the discovery of biomarkers and drug targets with intellectual property. Some of these initiatives include the establishment of the Hong Kong Science and Technology Park, Phase 1 Clinical Trial Centres managed by multidisciplinary teams at the Chinese University of Hong Kong and Hong Kong University based at the Prince of Wales Hospital and Queen Mary Hospital, respectively and Hong Kong Genome Institute, the latter with a mandate to sequence 50,000 human genomes to uncover causes of rare and challenging diseases, such as young-onset diabetes.
CONCLUSION

The recent proposal of the Hong Kong Government to establish a Food and Drug Administration (FDA)-like unit at the Department of Health to expedite investigational new drug (IND) application and approval for registration of new drugs will further enhance the ecosystem necessary to turn Hong Kong into a hub of innovative medicine in the Greater Bay Area. In pursuit of these ambitious goals, developing career paths for clinical pharmacologists, endocrinologists and physician researchers interested in studying the impact of drugs on humans will accelerate the bedside-to-bench-to-bedsit cycle, including drug discovery, evaluation and application to preserve health and prevent disease (Fig. 4).

References

CHOOSE REPATHA®

For your patients with established ASCVD

CHOOSE PROVEN OUTCOMES

Repatha® added to a statin was proven to reduce the risk of CV events in the FOURIER study.

Composite CV event (key secondary endpoint) risk reduced by 20% With Repatha® + statin vs. statin alone

(HER=0.79; 95% CI: 0.66-0.95; p < 0.001)

CHOOSE AN ESTABLISHED SAFETY PROFILE

Repatha® demonstrated favorable long-term safety in the 5-year OSLER-1 study.

The rates of AEs were stable and consistent over the 5-year treatment Safety profile comparable to placebo

No neutralizing antibodies were detected in 5 years

CHOOSE AT-HOME ADMINISTRATION

• Simple dosing every 2 or 4 weeks
• Comfortable self-injection with Repatha® SureClick® Autoinjector
• No titration needed

Repatha® (Evolocumab) Abbreviated Prescribing Information

For healthcare professionals only.

For medical enquiries or to report adverse events or product complaints, please call +852 800 961 142 or email medinfo.JAPAC@amgen.com.

Repatha® Hong Kong Full Prescribing Information. HKREPPI05. May 2021.

OSLER-1 study design: The OSLER-1 study was a double-blind, randomized, placebo-controlled, event-driven trial in 27,364 adults with established CV disease and with LDL-C >180 mg/dL or >150 mg/dL in those with high risk metabolic syndrome. Subjects were randomly assigned to receive Repatha® (140 mg every 2 weeks or 420 mg once monthly) or placebo. The median follow-up duration was 26 months. The risk of the primary efficacy endpoint (a composite of time to CV death, MI, hospitalization for unstable angina, stroke, or coronary revascularization) was reduced by 21% (HR: 0.79; 95% CI: 0.66-0.95; p < 0.001) with Repatha® versus placebo. The rates of AEs were stable and consistent over the 5-year treatment Safety profile comparable to placebo No neutralizing antibodies were detected in 5 years.
Novel Treatments of Obesity – 1G, 2G, or 3G?

Dr Paul CH LEE

MBBS (HK), MRCP (UK), FHKCP (Endo), FRCP (Edin), MD (HK)
Clinical Assistant Professor, Department of Medicine, School of Clinical Medicine, University of Hong Kong

Obesity is a global health problem. The World Health Organization (WHO) recently set out plans to accelerate the prevention of obesity. Indeed, over the past four decades, the age-standardised prevalence of obesity has tripled in men and doubled in women. According to the World Obesity Federation, it is estimated that by 2035, almost 2 billion adults will be obese, as defined by body mass index (BMI) ≥ 30 kg/m^2, and over 4 billion individuals will have BMI ≥ 25 kg/m^2, reaching epidemic proportions. Obesity leads to increased risks of type 2 diabetes (T2D), steatotic liver disease, cardiovascular diseases (CVD), cancer, as well as mortality. Both high BMI and fasting glucose have become the top five leading risks of all-cause mortality and disability-adjusted life-years. Increased adiposity causes insulin resistance, which is the key metabolic defect underlying the pathogenesis of T2D, and hence, the majority of individuals with T2D are overweight or obese. A previous study suggested that overweight (BMI ≥ 25 - < 30 kg/m^2) and obese (BMI ≥ 30 kg/m^2) individuals were at least 3 and 8 times more likely to develop incident T2D, respectively, regardless of their genetic predisposition. Among T2D patients who are overweight and obese, it is increasingly recognised that body weight management is an equally important component of care as glycaemic control, cardiovascular risk factor management and cardio-renal risk protection. Therefore, novel therapeutic strategies for individuals with obesity and/or diabesity are eagerly awaited, and recent studies suggested that we might soon be moving towards a “3G” era for the management of obesity and diabesity.

GLUCAGON-LIKE PEPTIDE 1 (GLP1) AND GLUCOSE-DEPENDENT INSULINOTROPIC POLYPEPTIDE (GIP)

The incretin effect describes the observation that oral glucose ingestion stimulates insulin response to a larger extent than following the infusion of iso-glycaemic intravenous glucose, which leads to similar glucose excursion. In T2D patients, the incretin effect is reduced or absent. Glucagon-like peptide 1 (GLP1) and glucose-dependent insulinotropic polypeptide (GIP) are the two incretin hormones responsible for the incretin effect. GLP1 is predominantly secreted from the enteroendocrine L cells located in the distal small bowel and colon, whereas GIP is secreted from the enteroendocrine K cells in the duodenum and jejunum. Following meal ingestion, glucose, amino acids, lipids and fatty acids can all stimulate the secretion of GLP1 and GIP with an increase in their circulating levels. Both GLP1 and GIP are insulinotropic and stimulate insulin secretion from the beta (β) cells of the pancreatic islets in a glucose-dependent manner. In contrast, their effects on glucagon secretion are different. GLP1 decreases whereas GIP increases glucagon secretion.

GLUCAGON

Glucagon is a peptide hormone secreted from the alpha (α) cells of the pancreatic islets. Classically, its physiological actions in nutrient homeostasis are opposite to those of insulin. Glucagon binds to its receptors on hepatocytes, stimulates glycogenolysis and gluconeogenesis, and inhibits glycolysis and glycogenesis, collectively resulting in increased hepatic glucose production. Moreover, glucagon promotes hepatic amino acid metabolism and β-oxidation. While hypoglycaemia is a potent stimulus for increased glucagon secretion, paradoxically, hyperglucagonaemia has been observed among obese individuals and T2D patients, which has been related to hepatic glucagon resistance and altered α-cell to β-cell ratio.

1G – GLP1 RECEPTOR AGONISTS (GLP1rA)

GLP1 receptors (GLP1R) are widely distributed in the central nervous system, including regions such as the hypothalamus that are highly involved in the regulation of food intake. Therefore, in addition to glucose lowering, administration of exogenous GLP1 causes anorectic effects, which lead to reduced food intake and contribute to weight loss. Moreover, exogenous GLP1 inhibits gastrointestinal motility, reduces gastric emptying and promotes satiety. As a result, pharmacological GLP1R agonism has been established not only as an important anti-diabetic agent for T2D patients, but also as a popular treatment strategy for obesity.

Among the GLP1rA, both liraglutide 3.0 mg daily and semaglutide 2.4 mg weekly are currently approved by the United States Food and Drug Administration (FDA) as pharmacotherapy for obesity as an adjunct to lifestyle modification. In the Satiety and Clinical Adiposity - Liraglutide Evidence (SCALE) Obesity and Prediabetes Study, a randomised-controlled trial involving 3,731 overweight or obese adults without diabetes (mean BMI 38.3 kg/m^2; 61 % with prediabetes), treatment with liraglutide 3.0 mg daily for 56 weeks...
reduced body weight by a mean of 8.0 % as compared to 2.6 % with placebo. There were significantly more participants achieving weight loss of ≥ 5 %, > 10 % and > 15 % after liraglutide than with placebo (63.2 %, 33.1 % and 14.4 % vs 27.1 %, 10.6 % and 3.5 %, respectively)19. Following the success of liraglutide, in the Semaglutide Treatment Effect in People with Obesity (STEP) 1 Study, a randomised-controlled trial involving 1961 adults without diabetes (mean BMI 37.9 kg/m²; 43.7 % with prediabetes), treatment with semaglutide 2.4 mg once weekly for 68 weeks reduced body weight by a mean of 14.9 % as compared to 2.4 % with placebo. Similarly, a significantly higher proportion of participants achieved a weight loss of ≥ 5 %, ≥ 10 % and ≥ 15 % after semaglutide than with placebo (86.4 %, 69.1 % and 50.5 % vs 31.5 %, 12.0 % and 4.9 %, respectively)20. In both studies, treatment with GLP1rA was associated with improvement in various cardio-metabolic risk factors. Nausea was commonly reported among GLP1rA-treated participants, and around 4.5 - 6 % of them discontinued GLP1rA during the study due to gastrointestinal adverse events19,20.

Orforglipron is an oral non-peptide GLP1rA currently in development for the treatment of obesity and T2D. In a recently published phase 2 randomised controlled trial involving 272 overweight or obese adults without diabetes (mean BMI 37.9 kg/m²), treatment with orforglipron 12 mg, 24 mg, 36 mg and 45 mg daily for 36 weeks reduced body weight by a mean of 9.4 %, 12.5 %, 13.5 % and 14.7 %, as compared to 2.3 % with placebo. A high proportion of orforglipron-treated participants achieved weight loss ≥ 5 %, ≥ 10 % and ≥ 15 % after 36 weeks (72 - 92 %, 47 - 75 % and 22 - 48 %, respectively)21.

2G - GIP/GLP1 RECEPTOR CO-AGONISTS

Despite both being incretin hormones, over the years, pharmacological development has been favoured towards agonism of GLP1R over GIP receptors (GIPR) due to several reasons. First, early reports demonstrated reduced insulinotropic effects of GIP in T2D patients25. Secondly, preclinical GIPR loss-of-function studies showed that blocking GIPR signalling was associated with protection against obesity induced by high fat diet26. Thirdly, GIP stimulates the secretion of glucagon, which theoretically could worsen hyperglycaemia in T2D22.

However, several recently published large-scale, multicentred, phase 2b and phase 3 randomised controlled trials of tirzepatide, a novel dual GIP and GLP1 receptor agonist administered subcutaneously, have rekindled interest in pharmacological GIPR agonism for the treatment of obesity and T2D. In the SURMOUNT-1 Study, which involved 2,539 overweight or obese adults without diabetes (mean BMI 38 kg/m²; 40.6 % with prediabetes), treatment with tirzepatide 5 mg, 10 mg and 15 mg once weekly for 72 weeks reduced body weight by a mean of 15.0 %, 19.5 % and 20.9 %, respectively, as compared to 3.1 % with placebo. Over 85 % of the tirzepatide-treated participants achieved ≥ 5 % weight loss, the general target required for clinical improvement in metabolic health. A higher proportion of participants treated with tirzepatide 15 mg weekly lost ≥ 10 %, ≥ 15 % and ≥ 20 % than those treated with 10 mg weekly (83.5 %, 70.6 % and 56.7 % vs 78.1 %, 66.6 % and 50.1 %, respectively), despite the similar incidence of gastrointestinal side effects25. In the SURMOUNT-2 Study, involving 1,514 overweight or obese adults with T2D (mean BMI 36.1 kg/m²; median glycated haemoglobin HbA1c 8.0 %), treatment with tirzepatide 10 mg and 15 mg once weekly for 72 weeks reduced body weight by a mean of 12.8 % and 14.7 %, respectively, as compared to 3.2 % with placebo. Moreover, the odds of achieving weight loss of ≥ 5 %, ≥ 10 %, ≥ 15 %, ≥ 20 % were 8.3, 16.1, 25.2 and 25.6 times with tirzepatide 10 mg weekly, and 10.5, 19.4, 36.1, 42.2 times with tirzepatide 15 mg weekly as compared to placebo24. In the SURPASS-2 Study, an open-label trial comparing the different doses of tirzepatide (5 mg, 10 mg and 15 mg once weekly) against semaglutide 1mg once weekly in 1,877 adults with T2D (mean BMI 34.2 kg/m²; median HbA1c 8.3 %), treatment with tirzepatide at all doses were superior to semaglutide both in terms of glucose-lowering and body weight reduction. The incidence rates of gastrointestinal adverse events were similar between tirzepatide 5 mg weekly (40.0 %) and semaglutide 1mg weekly (41.2 %), but were higher for tirzepatide 10 mg (46.1 %) and 15 mg weekly (44.9 %)25. These findings were overall in keeping with those from a phase 2b trial comparing the different doses of tirzepatide with dulaglutide 1.5 mg once weekly in T2D patients, which demonstrated that tirzepatide 5 mg and 10 mg once weekly provided superior efficacy in glucose-lowering and body weight reductions than dulaglutide but with similar tolerability28. In all the above trials, tirzepatide treatment was associated with substantial reductions in serum triglyceride, very low-density lipoprotein (VLDL) and free fatty acid levels.

Tirzepatide is often described as an “imbalanced” agonist with stronger affinity and potency at the GIPR than the GLP1R. However, at the GLP1R, tirzepatide is biased towards engaging cyclic AMP signalling over β-arrestin recruitment, an overall effect that could reduce internalisation of GLP1R and prolong GLP1R agonism27. Although the extent to which this unique pharmacological property of tirzepatide has contributed to the promising clinical results remains to be elucidated, GIP has been shown to improve peripheral insulin sensitivity through enhancing the lipid-buffering capacity of white adipose tissue (WAT), which only expresses GIPR but not GLP1R28. GIP increases blood flow to the WAT, enhances insulin-stimulated glucose uptake and lipoprotein lipase activity, promotes triglyceride storage and lowers circulating free fatty acid levels29. Moreover, GIP is expressed in both neuronal and non-neuronal cells in the hypothalamus, as well as in cell populations with and without GLP1R co-expression. Therefore, it is possible that the addition of non-neuronal GIPR pharmacological agonism of GIPR could provide synergistic anorectic effects than GLP1rA agonism alone29. Interestingly, in preclinical models, the addition of long-acting GIPR agonists also attenuated the aversive effects induced by GLP1rA co-administration30. Whether this would translate to a clinical advantage and improve tolerability, especially during dose escalation in humans, requires further investigation in clinical studies.
2G - GLUCAGON/GLP1 RECEPTOR CO-AGONISTS

While glucagon increases glucose levels, glucagon receptors (GCGR) are present in β cells and glucagon is a potent stimulator of insulin secretion\(^8\). Moreover, it is increasingly recognised that exogenous glucagon could contribute to weight loss by reducing food intake and gastrointestinal motility, promoting satiety, and increasing energy expenditure via its thermogenic effects\(^8\). Therefore, although counterintuitive at first sight, the combination of pharmacological agonism of GCGR and GLP1R becomes another potentially effective therapeutic strategy for obesity and diabesity. Cotadutide is a dual glucagon and GLP1 receptor agonist administered subcutaneously. In a phase 2b randomised controlled trial involving 834 adults with T2D on metformin monotherapy (mean BMI 35 kg/m\(^2\); median HbA1c 8.1 %), comparing cotadutide against liraglutide 1.8 mg once daily and placebo, treatment with cotadutide for 54 weeks significantly improved HbA1c as compared with placebo, but not liraglutide. Cotadutide at 100 ug, 200 ug and 300 ug daily also reduced body weight by a mean of 3.7 %, 3.2 % and 5.0 %, and the latter was significantly greater than the 3.3 % weight loss achieved with liraglutide 1.8mg once daily\(^8\).

3G - GIP/GLP1/GLUCAGON RECEPTOR TRI-AGONISTS

Finally, what if we engage all three receptors? Two recent phase 2 randomised controlled studies have evaluated the efficacy of retratrutide, a triple agonist of the GIPR, GLP1R and GCGR administered subcutaneously. In the Retatrutide Phase 2 Obesity Trial, which involved 338 overweight or obese adults without diabetes (mean BMI 37.3 kg/m\(^2\); 36 % with prediabetes), treatment with retratrutide 1 mg, 4 mg, 8 mg and 12 mg once weekly for 48 weeks reduced body weight by a mean of 8.7 %, 17.1 %, 22.8 % and 24.2 %, as compared to 2.1 % with placebo. All participants on retratrutide 8 mg and 12 mg once weekly, and 92 % of participants on retratrutide 4 mg achieved the target of ≥ 5 % weight loss. The majority of participants on retratrutide ≥ 4 mg once weekly had ≥ 15 % body weight reduction after 48 weeks. Strikingly, among participants treated with retratrutide 12 mg once weekly, 26 % of them even had ≥ 30 % body weight reduction\(^15\). In another phase 2 study comparing the different doses of retratrutide against dulaglutide 1.5 mg weekly and placebo in 281 T2D participants (mean BMI 35 kg/m\(^2\); median duration of diabetes of 8.1 years and HbA1c 8.3 %), treatment with retratrutide 4 mg once weekly for 36 weeks reduced HbA1c to a similar extent as dulaglutide. However, participants treated with retratrutide 8 mg and 12 mg once weekly experienced significantly greater glucose lowering than those treated with dulaglutide, with HbA1c reduction of up to 2.16 % in the retratrutide group after 36 weeks. Normoglycaemia, as defined by HbA1c < 5.7 %, was achieved after 36 weeks in over 15 % and 25 % of participants receiving retratrutide 8 mg and 12 mg once weekly, respectively. Among retratrutide-treated participants, dose-dependent body weight reductions of up to 16.9 % with retratrutide 12 mg once weekly were observed. Around 35 % of the retratrutide-treated participants experienced mild to moderate gastrointestinal adverse events, but only 8 % discontinued treatment due to these effects\(^15\).

CONCLUSION

While these multi-receptor agonists demonstrated an unprecedented level of clinical efficacy in glucose lowering and body weight reduction, further studies are required to clarify their long-term safety and investigate their roles in obesity-related complications, including atherosclerotic CVD, heart failure, chronic kidney disease, obstructive sleep apnoea, as well as metabolic-dysfunction steatohepatitis and liver fibrosis. Although most of these agents are still currently unavailable in Hong Kong, some of them are on course, and it is foreseeable that they will bring revolutionary changes in the management of obesity and/or diabesity in the next few years. That said, when they become available in clinical practice, all stakeholders should ensure stable stock supply to avoid drug shortage, which will pose an immense challenge to patients and their treating physicians.

References

Aptamil 白金版

Formula Ingredients Clinically Proven to Support Immunity of Cesarean Born Babies

GOS / FOS

30 億

產道同類益菌種

For more information:

3509 2008

1000days@nutricia.com.hk
27. Willard FS, Douros JD, Gabe MB, Showalter AD, Wainscott DB, Suter TM, et al. Tirzepatide is an imbalanced and biased dual GIP and GLP-1 receptor agonist. JCI Insight 2020;5.

Dermatology Quiz

Dr CHONG Lai-yin
MBBS(HK), FRCP(Lond, Edin, Glasg), FHKCP, FHKAM(Med)
Specialist in Dermatology & Venereology

This 40-year-old man had rapidly progressive skin redness in past three months. The lesions spread downward from face and neck to the trunk (Fig. 1) and limbs (Fig. 2). He has mild itchiness, scaling and dryness. Apart from the skin lesions, his general condition was well. His past health was good. There was no significant family history.

Questions
1. What are your diagnosis and differential diagnoses?
2. How would you establish the diagnosis?
3. How do you treat this patient?
4. What is the prognosis of this disease?

(See P. 36 for answers)
Unique Gelshield Diffusion Technology

Proven with significant improvement in Gastrointestinal tolerability from traditional metformin \(^1,2\)

Extended Release of Metformin Hydrochloride

References:
1. Glucophage \(^{\text{XR}}\) Prescribing Information Version: July 2019

Abbreviated Prescribing Information

Contents: Metformin HCl Indications: Reduction in risk or delay onset of type 2 DM in adult, overweight patients with IGT and/or IFG, and/or increased HbA1C who are at high risk for developing overt type 2 DM and still progressing towards type 2 DM despite implementation of intensive lifestyle change for 3 - 6 months. Treatment of type 2 DM in adults as an adjunct to adequate diet & exercise. Monotherapy or in combination with other oral antiadipose or inulin. Dosage: Adult with normal renal function (GFR >90 mL/min) Reduction in risk or delay in onset of type 2 DM Initially one 500-mg tab once daily w/ evening meal. After 10-15 days, adjust dose based on blood glucose measurements. Max: 2,000 mg once daily. Monotherapy in type 2 DM & combination with other oral antiadipose agents Usual starting dose: One 500-mg tab once daily, or one 1,000-mg tab once daily. After 10-15 days, adjust dose based on blood glucose measurements. Max, recommended dose for 500 mg and 1g tab is 2g daily. Max, recommended dose for 750 mg tab is 1.5g daily. Combination with insulin Usual starting dose is one tablet XR 500 mg or XR 1 g once daily, while Insulin dosage is adjusted on the basis of blood glucose measurements. For renal impairment patients A GFR should be assessed before initiation of treatment and at least annually thereafter. In patients at an increased risk of further progression of renal impairment and in the elderly, renal function should be assessed more frequently, e.g., every 3 - 6 months. Total max. daily dose of 2 g for GFR 60 - 89 mL/min, consider dose reduction for declining renal function. Total max. daily dose of 2 g for GFR 45 - 59 mL/min, review any increased risk of lactic acidosis before initiating metformin, whereas starting dose is at most half of max. dose. Total max. daily dose of 1 g for GFR 30 - 44 mL/min, review any increased risk of lactic acidosis before initiating metformin, whereas starting dose is at most half of max. dose. Pre- & Post-Prandial Advice: Swallow whole, do not chew/crush. Contraindications: Any type of acute metabolic acidosis (such as lactic acidosis, diabetic ketoacidosis), severe renal failure (GFR < 30mL/min), hepatic insufficiency, infectious diseases, following an IV urography or angiography, heart failure, recent MI, res. failure, shock, persistent or severe diarrhoea, recurrent vomiting, alcoholism, lactation. Special Precautions: Regular renal & blood sugar monitoring. Risk of lactic acidosis, most often occurs at acute worsening of renal function or cardiorespiratory illness or sepsis. Discontinue prior administration of iodinated contrast agents or surgery. May impair ability to drive or operate machines in combination with other antidepressants or agents. Pregnancy: Elderly (for reduction of risk or delay of type 2 DM) Adverse Reactions: GI & taste disturbances. Interactions: Iodinated contrast agents, corticosteroids, NSAIDs, ACE inhibitors, diuretics, sympathomimetics, alcohol, COX II inhibitors, angiotensin II receptor antagonists, OXT, and OTC2 inhibitor. Inducer Presentations: XR tab 500 mg x 60%. 750 mg x 30%. 1,000 mg x 60%. Date of version: JUN 2018

The information provided herein is intended for the use of healthcare professionals and shall not replace independent professional judgment. It is essential that you always refer to approved product information applicable in Hong Kong.
Drug-Induced Cardiac Arrhythmias: A Focused Update and Emerging Clinical Challenges

Dr Will YH CHAN

MBBS, MRes(Med), MRCP(UK), FHKCP, FHKAM(Medicine), FRCP(Glasg)
Clinical Assistant Professor, Department of Medicine, School of Clinical Medicine, The University of Hong Kong
Honorary Associate Consultant, Queen Mary Hospital
Honorary Clinical Fellow, Addenbrooke’s Hospital, Cambridge University Hospitals, Cambridge
Specialist in Cardiology

INTRODUCTION

Drug-induced cardiac arrhythmias is a common medical condition encountered in daily clinical practice. While incidence rates and clinical manifestations vary by studies, a key underscoring principle is timely recognition and high levels of clinical vigilance given the appropriate clinical contexts. The American Heart Association released a scientific statement in 2020 that provided a comprehensive review of the overall framework and approach to drug-induced cardiac arrhythmias, and this can also serve as a quick reference to the lists of common drugs involved.

The objective of this current article primarily focuses on updating the general clinicians on the recent clinical and research developments in this area, and highlighting drugs that are important but potentially less well recognised. A relevant and rapidly expanding clinical arena is that in cardio-oncology. Here, we will also succinctly cover the clinical pearls relating to cancer drug-induced cardiac arrhythmias.

DRUG-INDUCED BRADYARRHYTHMIAS

In general, drugs that precipitate bradyarrhythmias via direct actions either suppress the sinoatrial node or, alternatively, on the atrioventricular node and the His-Purkinje system (infra-nodal). Depending on the degree of suppression, the former can manifest as sinus bradycardia, or sinus pause with or without junctional escape rhythm. In comparison, drugs that inhibit atrioventricular conduction result in atrioventricular block. On top of these target-directed pharmacological actions, the potential influences an offending drug may impose on the balance between the autonomic tones are also important. For example, drugs such as cholinesterase inhibitors potentiate the parasympathetic nervous system, and may suppress the sinoatrial node automatically, causing bradycardia.

Unsurprisingly, the most commonly encountered drug-induced bradyarrhythmias in clinical practice are often a result of cardiovascular medication itself. The classical repertoire of heart rate-modulating agents, including beta-blockers, non-dihydropyridine calcium channel blockers (i.e. verapamil and diltiazem), and digoxin, has been well described. Perhaps less so familiarly recognised by general clinicians is ivabradine, a more recent addition to the armamentarium of heart rate control. Ivabradine is a specific funny current inhibitor that targets the hyperpolarisation-activated cyclic nucleotide-gated cation channels (HCN). It blocks the HCN in the sinoatrial node intra-cellularly and results in delayed diastolic depolarisation in a use-dependent manner. The “use-dependent” pharmacological property is usually favourable from a clinical use perspective, which means that the reduction in heart rate through HCN suppression is theoretically proportional to the absolute magnitude of the baseline heart rate. Thus, the greatest treatment benefits are derived in those with genuine tachycardia. Conversely, the risk of it causing profound bradycardia in patients with modest heart rates at the outset is generally low. Indeed, from prior large clinical trials, a good safety profile has been demonstrated, and the incidence of ivabradine-induced bradycardia ranged between 8 - 18 %, with the majority of them being asymptomatic. Ivabradine has been FDA-approved for reducing hospitalisation in patients with chronic heart failure with impaired left ventricular ejection fraction ≤ 35 % and heart rate ≥ 70 bpm, after maximally tolerated betablocker therapy. It is also indicated for patients with stable angina who did not respond to the first-line therapies (European Society of Cardiology class IIa recommendation).

Ticagrelor is another cardiovascular drug that has gained increasing clinical use and possesses bradyarrhythmic potential. Indicated for cardiovascular protection in acute coronary syndrome patients with or without coronary stenting, and those with a prior history of myocardial infarction, ticagrelor is an antiplatelet agent that reversibly antagonises the P2Y12 receptor. It has a faster onset of action and greater potency compared to clopidogrel. The mechanism of ticagrelor causing bradycardia is not entirely clear, but is believed to be mediated via increased levels of adenosine. In the DISPERSE-2 trial, which investigated the safety and initial efficacy of ticagrelor versus clopidogrel in patients with myocardial infarction, increased rates of ventricular pauses were observed in those who received ticagrelor. Correspondingly, patients at risk of bradyarrhythmia were subsequently excluded from the subsequent landmark phase 3 trials of ticagrelor (PLATO, and PEGASUS TIMI-54). Nevertheless, a greater proportion of patients was still observed to experience ventricular pause > 3 seconds during a holter monitoring subgroup analysis in PLATO. As such, in the Summary of Product Characteristics of Ticagrelor, there is a general caution for patients at risk for bradyarrhythmic events (e.g. sick sinus syndrome without a pacemaker implant, second- or third-degree atrioventricular block, or bradycardia-related syncope), as well as for the concomitant use of medicinal products known to induce bradycardia in conjunction with ticagrelor. In a systematic review and meta-analyses...
that included 15 randomised controlled trials, the excess risks of bradyarrhythmia and severe bradyarrhythmia were respectively 15% (95% CI 1.05 to 1.26) and 29% (95% CI 1.02 to 1.65). Thus, while considering its derived clinical benefits, clinicians should also be cognizant of its potential bradyarrhythmic properties and avoid using it in patients with existing bradycardia or preponderance to heart block.

With the potential implications of these specific cardiovascular drugs in mind, a significant clinical burden of bradyarrhythmias in the community setting still rests with various non-cardiovascular drugs that can cause bradycardia. These commonly include acetylcholinesterase inhibitors, anaesthetic agents, and antidepressants.

In the complete assessment of patients with suspected drug-induced bradyarrhythmias, a detailed medical history is essential. Electrolyte abnormalities, hypothyroidism, as well as alternative causes, including acute coronary syndrome, should be excluded. Acute clinical management principally involves cessation of the culprit agent, and supportive management, including advanced cardiovascular life support per indicated. Intravenous atropine may be used (0.6 mg every 3 - 5 minutes, up to a maximum dose of 3 mg). Other supportive therapies include intravenous infusion of isoproterenol, dopamine, dobutamine, or epinephrine. If responses remain refractory or the patient becomes hemodynamically unstable, temporary transcutaneous or transvenous pacing support should be promptly administered. Overt cases of drug overdoses involve specific management strategies, and these are to be detailed elsewhere.

It should be noted amongst patients who had an atrioventricular block, presumably due to a culprit bradycardic agent, 56% experienced subsequent recurrences of atrioventricular block. As such, the “drug-induced” bradycardia episodes for these patients may represent an unmasking of underlying conduction system diseases or its predisposition. These patients may well warrant consideration for pacemaker implantation. If in doubt, a referral to a cardiologist for assessments should be made.

DRUG-INDUCED TACHYARRHYTHMIAS

Torsades De Pointes and QT Prolongation

In terms of drug-induced tachyarrhythmias, one of the most dreaded complications to recognise and prevent, is torsades de pointes (TdP). TdP is a rare, life-threatening form of polymorphic ventricular tachycardia associated with QT (referred to as QTc [corrected QT] in the subsequent text as appropriate) prolongation. When TdP degenerates into ventricular fibrillation, sudden cardiac death could result. Although congenital long QT syndrome can also present with a similar picture, drug-induced TdP is more frequently encountered. The true incidence of drug-induced TdP is unknown in the local Hong Kong population, but was reported to be 2.5 per million per year for males and 4 per million per year for females in a Western study. As an inconvenient truth, drugs with a propensity to cause TdP are implicated in broad ranges of common therapeutic areas. Other than cardiovascular drugs comprising mainly antiarrhythmics that possess pro-arrhythmic potentials themselves, the antimicrobials, antipsychotics and antidepressants are amongst the top categories implicated in the risk of TdP. Fluoroquinolones (levofloxacin, ciprofloxacin), macrolides (such as azithromycin, erythromycin, clarithromycin) (see illustrative Fig. 1),azole antifungal agents, and chloroquines are typical examples of such antimicrobials. In terms of cellular mechanisms, TdP is indeed one of the most extensively studied adverse drug reactions, and thus the pharmacological basis has been rather well described. In brief, the primary mechanism by which offending drugs cause TdP is via blocking the IKr (commonly via blocking the hERG potassium channel), a major cardiac potassium current contributing to cardiac repolarisation, thus precipitating QT prolongation. Nevertheless, QT prolongation appears to be an important but not sufficient cause for TdP to occur. Risk factors for drug-induced TdP can be broadly classified into 3 categories:

Patient-Specific Factors

Firstly, these include demographic factors (advanced age > 65 years, female sex), existing heart diseases (acute myocardial infarction, heart failure with reduced ejection fraction, bradycardia), electrocardiographic factors (baseline QTc interval > 500 ms, post-dosing QTc interval increase by >= 60 to 70 ms when given an offending drug), electrolyte disturbances (hypokalemia, hypocalcemia, hypomagnesemia), use of diuretics, hypothermia, and renal impairment. Furthermore, a genetic element probably plays an impartial role. Such pre-determined “repolarisation reserve” is believed to confer an individual a defined intrinsic tendency of developing QTc prolongation and TdP when exposed to a given offending drug.
Drug-Specific Factors

The pharmacological properties of each drug to prolong the QTc interval and cause TdP to differ significantly. Knowledge of "classical" agents which may prolong the QTc interval allows clinicians to stay vigilant of the associated risk and to consider alternative agents if possible. And if treatment is started, electrocardiogram monitoring should be implemented after drug initiation. One example is arsenic trioxide, a drug used commonly for the treatment of acute promyelocytic leukaemia, in which case the proportion of patients having prolonged QTc was as high as 63%. Furthermore, although the QTc interval is a composite measure of assessing cardiac repolarisation and how a drug may affect it, its absolute value has limited applications. This is because different drugs may differentially affect cardiac repolarisation via exacerbating its transmural or spatial inhomogeneity in the heart (i.e. causing QT dispersion), which is important in causing TdP. Above all and perhaps most relevant in clinical practice, rapid intravenous administration of an offending drug is a risk factor for causing TdP.

Scenario-Specific Factors

Finally, these take account of the complex specific clinical factors for each individual case, including drug-drug interactions, altered excretion/metabolism of drugs resulting in increased drug exposures, as well as changes in medical conditions that may compromise individual patient’s repolarisation reserve. Surely, the above three kinds of risk factors are interlinked rather than mutually exclusive.

Correspondingly, astute clinicians should pre-emptively identify patients who are prima facie evident for an increased risk of TdP, when considered for a specific therapy that might cause TdP. If possible, use of QTc-prolonging medications in patients with pre-existing QTc interval > 450 ms should be avoided. Any reversible factors, in particular electrolyte disturbances and hypothyroidism should be duly corrected. Substitution with a suitable alternative drug, when available, should be considered. Appropriate renal adjustment should be performed when indicated. Rapid intravenous infusion of QTc-prolonging drugs should be avoided. Furthermore, using more than one concomitant QTc-prolonging drugs should be avoided. The attending clinician should also be proactive and look for any potential drug interactions high-risk for QTc-prolongation, especially those interfering with cytochrome P450 CYP 3A4 and CYP 2D6. In addition, QTc interval should be routinely monitored.

As for general principles on the acute management of TdP, offending drugs should be stopped immediately. Hemodynamically unstable patients should promptly undergo defibrillation. Intravenous magnesium sulphate should be given, even without reference to patient’s magnesium level. Any hypokalemia, hypocalcaemia or hypomagnesemia should be treated. If TdP remained refractory, overdriving cardiac pacing should be administered. Further specific managements follow those of the published guidelines.

Despite current knowledge, drug-induced TdP remains a significant clinical challenge, both at the clinician and system levels. Given the diverse disease spectrums and therapeutic areas involved in the setting of an ageing population and polypharmacy, a multidisciplinary team approach with a strengthened role of the clinical pharmacists in upstream risk assessment will be valuable. Further research and system improvements may help to drive further improvements in this area to mitigate the risks of avoidable deaths related to drug-induced TdP worldwide.

Drug-Induced Atrial Fibrillation And Emerging Challenges From Cardio-Oncology

Atrial fibrillation (AF) is the most commonly encountered sustained cardiac arrhythmia in clinical practice. It is also probably the most common drug-induced tachyarrhythmia. The more common culprit or exacerbating agents include alcohol, caffeine, adrenergic agonists, anticholinergics, psychotropic agents, antiarrhythmic drugs, bisphosphonates, and abused substances such as cocaine and amphetamines.

Cardiotoxic including AF-inducing potentials of the earlier chemotherapeutic agents, such as the anthracyclines, have been well described. More recently, newer anticancer agents represent a rapidly expanding group of drugs that is gaining clinical importance. With therapeutic advances, the clinical course for many cancer patients has greatly transformed. Growing populations of patients with malignancies now have markedly improved clinical survival. At the same time, the rapidly growing number of options in the therapeutic armamentarium, particularly the small molecule oral kinase inhibitors and immunotherapies, pose clinical challenges with regard to potential cardiac complications, including AF.

Ibrutinib is a first-of-its-class Bruton Tyrosine Kinase (BTK) inhibitor, an oral therapy that is effective for the treatment of patients with B-cell haematological malignancies. BTK is a cytoplasmic tyrosine kinase that plays a key role in the downstream signal transduction pathway of the B-cell receptor, and is pivotal in modulating B-cell proliferation, differentiation and survival. Research showed that ibrutinib use was associated with significant cardiovascular adverse effects, particularly increased rates of hypertension, AF and bleeding. Increased bleeding risk and de novo AF are common in these patients may present a clinical conundrum in management. The risk of AF amongst patients receiving ibrutinib is increased up to 4-fold, with prevalence estimates observed at 3.5 to 25%.

Considering that hypertension is an important cause of AF, incident hypertension in patients treated with ibrutinib was up to 72%. Furthermore, new or worsened hypertension was associated with more than a doubling of major adverse cardiovascular events, including AF. Comparatively, the other two FDA approved newer-generation and more selective BTK inhibitors, namely acalabrutinib and zanubrutinib, are generally associated with lower risks of AF.

Experimental studies suggested that the mechanism of ibrutinib leading to AF is mediated via various
The UroLift™ Implant Induces Tissue Remodeling¹

The UroLift™ System uses a proven approach to treating BPH that lifts and holds the enlarged prostate tissue out of the way, so it no longer blocks the urethra. Tissue remodeling is induced by localized compression between the UroLift™ implant capsular tab and urethral end piece, which can assist in long-term durability.¹

Histology of canine prostate section with implant

- **Tissue compression**
- **Decreased blood flow**
- **Lobular atrophy**
- **Scarring**

Localized compression in the implant zone between the capsular tab (CT) and urethral end-piece (UE) results in reduced tissue perfusion.

Moderate lobular atrophy and mild chronic inflammation in tissue surrounding the implant observed at one and six months.

Stable end-stage healing response characterized by lobular atrophy and scarring in tissue surrounding the implant at 12 month.

Encapsulation of implant may occur as early as 6 months.¹

Safety Information:
Indicated for the treatment of symptoms of an enlarged prostate up to 100cc in men 50 years or older. As with any medical procedure, individual results may vary. Most common side effects are temporary and include hematuria, dysuria, micturition urgency, pelvic pain, and urge incontinence.² Rare side effects, including bleeding and infection, may lead to a serious outcome and may require intervention. Consult the Instructions for Use (IFU) for more information.

References: 1. Roehrborn, Prostate Can Prost Dis 2021 2. Roehrborn, J Urology 2013

Teleflex, the Teleflex logo and UroLift are registered trademarks of Teleflex Incorporated or its affiliates.
© 2023 Teleflex Incorporated. All rights reserved. MCI-2023-0645-EN-HK - Rev 0 - 09 23 PDF
“off-target” pathways, amongst which C-terminal Src Kinase (CSK) inhibition seemed the most promising. Further research is needed in this area to elucidate the mechanisms of drug-induced AF in these novel cancer treatment modalities. These will allow us to select the most appropriate agents for our patients and formulate preventive strategies, ultimately maximising therapeutic efficacy at the minimised risk of cardiac complications.

The other novel cancer therapies of interest include immune checkpoint inhibitors and chimeric antigen receptor T cell (CAR-T) therapy, amongst others. However, data regarding their potential role in AF remained limited, and more prospective studies focusing on arrhythmic outcomes are needed.

The management principles of AF in cancer patients generally follow those of usual AF management. Aetiological assessments, including thyroid function tests, electrolytes and the exclusion of valvular/structural heart diseases, are essential. Rate, rhythm control, and stroke prevention with appropriate anticoagulation constitute the mainstay. Nevertheless, here, a structured review of the drugs is particularly pivotal. Cancer patients could be at increased vulnerability to drug-drug interactions in various ways. These principally occur via interfering with CYP3A4, CYP2D6, and Ρ-glycoprotein. For example, verapamil and diltiazem are both CYP3A4 inhibitors and their use can potentially raise blood levels of various anticancer drugs. On the other hand, cancer therapies that are CYP3A4 or p-glycoprotein inhibitors (e.g. imatinib, ibrutinib, tamoxifen, and abiraterone) have the potential to increase serum level of direct oral anticoagulants. Such may potentially increase bleeding tendencies in cancer patients with AF. Conversely, cancer therapies that are enzyme inducers (such as dexamethasone and paclitaxel) may decrease serum levels of anticoagulants and precipitate an increased risk of stroke or thromboembolism. Other than thorough history taking and a meticulous risk assessment of drug-drug interactions, another possible answer to the clinical conundrum might be a direct measurement of anticoagulant activity in these patients on an individualised basis. However, overall evidence remains limited in this area, and further research is warranted.

CONCLUSIONS

With the increased complexity of therapeutic landscapes in the ageing population and the emergence of novel drugs, including cancer therapies, the clinical challenges of drug-induced cardiac arrhythmias are now greater than ever. Prompt recognition, high levels of clinical vigilance, and anticipatory risk mitigation with therapeutic monitoring in high-risk patients remain the key principles in clinical management. Treatment of specific cardiac arrhythmias follows the existing clinical guidelines. Risks and mechanisms of cancer therapy-induced AF, and the potential role of therapeutic monitoring of direct anticoagulants represent areas warranting further research in cancer patients with or at risk of AF. Reinforced systems approach in pharmacovigilance may further protect against the burden of drug-induced life-threatening arrhythmias, including TdP in the community.
We know that when it comes to improving people’s lives, there are always new life-changing breakthroughs we can make. That’s what drives us.

www.roche.com

M-HK-00001361
<table>
<thead>
<tr>
<th>Sunday</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zoom Live Innovative approach to solve the problems on LUTS</td>
<td>In-person / Zoom Live HKMA-HKSTP CME Lecture A Novel Urinary DNA Isolation Method to Improve HPV Detection</td>
<td>Certificate Course in Ophthalmology 2023 - Module 2</td>
<td>In-person Seminar on Infectious Diseases 2023 1. Ending the AIDS Epidemic, Can You Be a Game Changer Too? 2. Management of Adults with Chronic Hepatitis B Infection in Primary Care</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Zoom Live Hallux Valgus: An Overview and Updates on Management</td>
<td>Certificate Course on Healthcare Mediation 2023 (Video Lectures)</td>
<td>In-person Acute diarrhea Management in Pediatric Patients</td>
<td>In-person The HKMA District Health Network (YTM) Mental Health CME Seminar 1. No Health Without Mental Health - Destigmatisation and Human Rights Advocacy 2. A Human Rights Approach to Psychosocial Disabilities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Certificate Course on Healthcare Mediation 2023 (Video Lectures)</td>
<td>The Hong Kong Neurosurgical Society Monthly Academic Meeting - To be confirmed</td>
<td>Certificate Course in Cardiology 2023</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Zoom Live Navigating the Management of Atopic Dermatitis</td>
<td>Certificate Course in Ophthalmology 2023 - Module 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Certificate Course in Cardiology 2023</td>
<td>Certificate Course in Ophthalmology 2023 - Module 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Certificate Course in Cardiology 2023</td>
<td>Certificate Course in Cardiology 2023</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>In-person / Zoom Live HKMA-CUHK Medical Centre CME Programme 2023 Topic: To-be-confirmed</td>
<td>FMSHK Executive Committee Meeting FMSHK Council Meeting FMSHK 34th Annual General Meeting HKFMS Foundation 20th Annual General Meeting</td>
<td>Certificate Course in Ophthalmology 2023 - Module 2</td>
<td>Certificate Course in Cardiology 2023</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>FMSHK Executive Committee Meeting</td>
<td>FMSHK Council Meeting</td>
<td>FMSHK 34th Annual General Meeting</td>
<td>FMSHK 34th Annual General Meeting</td>
</tr>
<tr>
<td>19</td>
<td>Zoom Live The Role of Probiotics in the Treatment of NAFLD and Metabolic Disease</td>
<td>The HKMA District Health Network (Central, Western & Southern) CME Lecture — Diagnosis and Management of Common Skin Infections in Primary Care</td>
<td>Certificate Course in Cardiology 2023</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>Zoom Live The HKMA District Health Network (Central, Western & Southern) CME Lecture — Diagnosis and Management of Common Skin Infections in Primary Care</td>
<td>Certificate Course in Cardiology 2023</td>
</tr>
</tbody>
</table>
For adult patients with CKD and T2D

A different pathway leads to different possibilities

Delay CKD progression with Kerendia¹

- The first and only non-steroidal MRA approved to treat CKD in T2D²,³
- Proven to delay CKD progression and reduce the risk of CV events²,⁴
- Manageable impact on serum potassium²,⁴
- Included in 2022 ADA and KDIGO Guidelines with level A evidence²,⁵

² As of 9 Jan 2023

Kerendia 10 / 20 mg tablets
Abbreviated Prescribing Information
(Please refer to the full prescribing information before prescribing)

Composition: Active ingredient: finerenone. Excipients: croscarmellose sodium, hypromellose 5 cP, lactose monohydrate, magnesium stearate, cellulose microcrystalline, sodium lauryl sulfate, talc, titanium dioxide, ferric oxide yellow (for 20 mg tablet), ferric oxide red (for 10 mg tablet).

Indications: Delay progressive decline of kidney function in adults with chronic kidney disease associated with Type 2 diabetes (with albuminuria). In addition to standard of care. Dose and method of administration: Recommended target dose: 20 mg once daily. Adjustment: Recommended when serum potassium is ≥5.6 mmol/L, may be considered with additional serum monitoring within the first 4 weeks based on patient characteristics and serum potassium levels: if serum potassium ≥5.6 to 5.6 mmol/L; not recommended if serum potassium >5.6 mmol/L, or in patients with eGFR <25 mL/min/1.73m². The starting dose is 20 mg once daily if eGFR ≥25 to <60 mL/min/1.73m². Continuous: Four weeks after initiation or re-start of up-titration, reassess serum potassium and eGFR. Thereafter, reassess serum potassium periodically as needed based on patient characteristics and serum potassium levels.

Contraindications: Taking concurrent medications that are strong CYP3A4 inhibitors with renal insufficiency. Warnings and precautions: • Hyperkalemia. • Avoid concomitant use with potassium-sparing diuretics and other renin-angiotensin receptor antagonists. Used with caution and monitor serum potassium when taken concomitantly with potassium supplements, trimethoprim, or trimethoprim-sulfamethoxazole. • Avoid in patients with severe hepatic impairment (Child-Pugh C). Consider additional serum-potassium monitoring in patients with moderate hepatic impairment (Child-Pugh B). • Initiation of Kerendia treatment is not recommended in patients with eGFR <25 mL/min/1.73m². Continue Kerendia with caution regarding serum potassium levels in patients with end-stage renal disease (eGFR <15 mL/min/1.73m²). • No dose adjustment is required in the elderly. • Kerendia is not recommended in pediatric patients. • Kerendia should not be used during pregnancy unless there has been careful consideration of the benefit for the mother and the risk to the fetus. If the patient becomes pregnant while taking Kerendia, the patient should be informed of potential risks to the fetus. Avoid women of childbearing potential to use effective contraception and not to breastfeed during treatment of Kerendia. • Monitor serum potassium especially during initiation of or changes to dosing of Kerendia or a moderate or high CYP3A4 inhibitor. Avoid concomitant use with strong CYP3A4 inducers, moderate CYP2C9 inducers, or concomitant intake of grapefruit or grapefruit juice. Undesirable effects: • Hypotension (<10%); hyperkalemia. Common (≥1% to <10%); hypocalcemia, hypophosphatemia, glomerular filtration rate decreased. For further details, please refer to the full prescribing information (July 2022) (M-A-M-FHN-00764-1 Dec 2022).

Copyright © 2023 Bayer HealthCare Limited. All rights reserved.

Bayer HealthCare Limited
14/F Oxford House, Tai Kok Tsui, 979 King's Road, Quarry Bay, Hong Kong
Tel: +852 8100 2755 Fax: +852 3526 4755

Available now
<table>
<thead>
<tr>
<th>Date / Time</th>
<th>Function</th>
<th>Enquiry / Remarks</th>
</tr>
</thead>
</table>
| 2 THU 2:00 PM | In-person / Zoom Live | HKMA-HKSTP CME Lecture
 A Novel Urinary DNA Isolation Method to Improve HPV Detection
 Organiser: The Hong Kong Medical Association and Hong Kong Science and Technology Park
 Speaker: Dr TAM Ching-ting
 Venue: HKMA Dr. Li Shu Pui Professional Education Centre, 2/F, Chinese Club Building, 21-22 Connaught Road, Central, Hong Kong
 Certificate Course in Ophthalmology 2023 - Module 2
 Organiser: The Federation of Medical Societies of Hong Kong
 Speaker: Dr Tommy Chung-yun CHAN; Dr Leslie Ka-luk CHENG |
| 2 SAT 2:00 PM | In-person | Seminar on Infectious Diseases 2023
 1. Ending the AIDS Epidemic, Can You Be a Game Changer Too?
 2. Management of Adults with Chronic Hepatitis B Infection in Primary Care
 3. Vaccines and Immunization Updates
 Organiser: Hong Kong Medical Association and HK Society for Infectious Diseases
 Speaker: Dr Bonnie Chun-kwan WONG; Dr Loey Lung-yi MAK; Dr LAI Chun-yip
 Venue: Hospital Hall, 8th Floor, Block G, Princess Margaret Hospital |
| 6 MON 2:00 PM | Zoom Live | Innovative approach to solve the problems on LUTS
 Organiser: The Hong Kong Medical Association
 Speaker: Dr YU Cheung |
| 7 TUE 2:00 PM | In-person / Zoom Live | Hallux Valgus: An Overview and Updates on Management
 Organiser: The Hong Kong Medical Association and Hong Kong Sanatorium & Hospital
 Speaker: Dr CHAN Wai-chung
 Venue: HKMA Dr. Li Shu Pui Professional Education Centre, 2/F, Chinese Club Building, 21-22 Connaught Road, Central, Hong Kong
 Certificate Course on Healthcare Mediation 2023 (Video Lectures)
 Organiser: The Federation of Medical Societies of Hong Kong
 Speaker: Dr Ludwig Chun-hing TSOI |
| 8 WED 7:30 AM | The Hong Kong Neurosurgical Society Monthly Academic Meeting - To be confirmed | CME Accreditation: 1.5 points
 College of Surgeons of Hong Kong
 Enquiry: Dr Calvin MAK
 Tel: 2965 4061
 Fax No.: 2965 4061 |
| 8 WED 2:00 PM | In-person / Zoom Live | HKMA-CUHK Medical Centre CME Programme 2023 (Physical Lecture + Online)
 Women's Health - Topic: Common Breast Pathology
 Organiser: The Hong Kong Medical Association and CUHK-Medical Centre
 Speaker: Dr IP Yiu-tung
 Venue: HKMA Dr. Li Shu Pui Professional Education Centre, 2/F, Chinese Club Building, 21-22 Connaught Road, Central, Hong Kong
 Certificate Course in Cardiology 2023
 Organiser: The Federation of Medical Societies of Hong Kong
 Speaker: Dr CHENG Yuet-wong |
| 9 THU 2:00 PM | In-person | Acute diarrhea Management in Pediatric Patients
 Organiser: The HKMA District Health Network
 Speaker: Dr HUI Cheuk-man
 Venue: TBC
 Certificate Course in Ophthalmology 2023 - Module 2
 Organiser: The Federation of Medical Societies of Hong Kong
 Speaker: Dr Michelle Ching-yim FAN; Dr Jasper Ka-wai WONG |
| 11 SAT 2:00 PM | In-person | The HKMA District Health Network (YTM) Mental Health CME Seminar
 1. No Health Without Mental Health - Destigmatisation and Human Rights Advocacy
 2. A Human Rights Approach to Psychosocial Disabilities
 Organiser: The HKMA District Health Network
 Speaker: Professor Michael Tak-hing WONG; Dr Simon Tat-ming NG
 Venue: Maggie, 2/F, Eaton Hotel, 380 Nathan Road, Kowloon, Hong Kong |
| 14 TUE 2:00 PM | Zoom Live | Individualised Management of Male Lower Urinary Tract Symptoms (LUTS) in Primary Care Setting
 Organiser: The Hong Kong Medical Association
 Speaker: Dr Vincent Tak-tsun LAW
 Certificate Course on Healthcare Mediation 2023 (Video Lectures)
 Organiser: The Federation of Medical Societies of Hong Kong
 Speaker: Dr ONG Kim-lian |
| 15 WED 7:00 PM | Zoom Live | Certificate Course in Cardiology 2023
 Organiser: The Federation of Medical Societies of Hong Kong
 Speaker: Dr Jason Kwok-chun KO |
| 16 THU 2:00 PM | Zoom Live | Navigating the Management of Atopic Dermatitis
 Organiser: The Hong Kong Medical Association
 Speaker: Dr WONG Hing-wing
 Certificate Course in Ophthalmology 2023 - Module 2
 Organiser: The Federation of Medical Societies of Hong Kong
 Speaker: Dr HO Wing-lau |
In the treatment of patients with type 2 diabetes and established CV disease receiving standard of care, CV death can strike at any time.

BATTLE CV DEATH NOW MORE THAN EVER

JARDIANCE demonstrated 38% RRR in CV death

- Established HbA1c efficacy
- Demonstrated safety profile
- Convenient, once-daily oral dosing

ADA & EASD recognize JARDIANCE as the SGLT2 inhibitor with stronger evidence of CV benefits

JARDIANCE (empagliflozin)

Jardiance is indicated in T2DM patients and established cardiovascular disease to reduce the risk of cardiovascular death.
<table>
<thead>
<tr>
<th>Date / Time</th>
<th>Function</th>
<th>Enquiry / Remarks</th>
</tr>
</thead>
</table>
| **21 TUE** | 2:00 PM | **In-person / Zoom Live**
HKMA-GHK CME Programme 2023
Topic: To-be-confirmed
Organiser: The Hong Kong Medical Association and Gleneagles Hong Kong Hospital
Speaker: To-be-confirmed
Venue: HKMA Dr. Li Shu Pui Professional Education Centre, 2/F, Chinese Club Building, 21-22 Connaught Road, Central, Hong Kong
| HKMA CME Dept
Tel: 3108 2507
1 CME Point |
| 7:00 PM | **Certificate Course on Healthcare Mediation 2023 (Video Lectures)**
Organiser: The Federation of Medical Societies of Hong Kong
Speaker: Dr Sandy Kit-ying CHAN | Ms Vienna LAM
Tel: 2527 8998 |
| **22 WED** | 7:00 PM | **Certificate Course on Cardiology 2023**
Organiser: The Federation of Medical Societies of Hong Kong
Speaker: Dr YUNG Chi-yui | Ms Vienna LAM
Tel: 2527 8998 |
| **23 THU** | 2:00 PM | **In-person / Zoom Live**
HKMA-HKSTP CME Lecture
Topic: DNA Methylation and Its Role in Health and Disease: Implications for Early Prediction, Prevention and Intervention
Organiser: The Hong Kong Medical Association and Hong Kong Science Park
Speaker: Dr Moshe SZYF
Venue: HKMA Dr. Li Shu Pui Professional Education Centre, 2/F, Chinese Club Building, 21-22 Connaught Road, Central, Hong Kong
| HKMA CME Dept
Tel: 3108 2507
1 CME Point |
| 7:00 PM | **Certificate Course in Ophthalmology 2023 - Module 2**
Organiser: The Federation of Medical Societies of Hong Kong
Speaker: Dr LAM Stacey Carolyn, Dr Christine Tian-xin WU | Ms Nancy CHAN
Tel: 2527 8998 |
| 7:00 PM | **FMSHK Executive Committee Meeting**
Organiser: The Federation of Medical Societies of Hong Kong
Venue: Council Chamber, 4/F, Duke of Windsor Social Service Building, 15 Hennessy Road, Wan Chai, Hong Kong | Ms Nancy CHAN
Tel: 2527 8998 |
| 7:30 PM | **FMSHK Council Meeting**
Organiser: The Federation of Medical Societies of Hong Kong
Venue: Council Chamber, 4/F, Duke of Windsor Social Service Building, 15 Hennessy Road, Wan Chai, Hong Kong | Ms Nancy CHAN
Tel: 2527 8998 |
| 8:30 PM | **FMSHK 3rd Annual General Meeting**
Organiser: The Federation of Medical Societies of Hong Kong
Venue: Council Chamber, 4/F, Duke of Windsor Social Service Building, 15 Hennessy Road, Wan Chai, Hong Kong | Ms Nancy CHAN
Tel: 2527 8998 |
| 8:30 PM | **HKFMS Foundation 26th Annual General Meeting**
Organiser: The Federation of Medical Societies of Hong Kong
Venue: Council Chamber, 4/F, Duke of Windsor Social Service Building, 15 Hennessy Road, Wan Chai, Hong Kong | Ms Nancy CHAN
Tel: 2527 8998 |
| **24 FRI** | 2:00 PM | **In-person**
The HKMA District Health Network (Yau Tsim Mong) CME Lecture in Physical Attendance Mode - Osteoarthritis of Knees: Drugs? Injection? Others?
Organiser: The HKMA District Health Network
Speaker: Dr HO Cham-on
Venue: Maggie, 2/F, Eaton Hong Kong, 380 Nathan Road, Kowloon, Hong Kong | Mr Peter HO
Tel: 3108 2514
1 CME Point |
| **27 MON** | 2:00 PM | **Zoom Live**
The Role of Probiotics in the Treatment of NAFLD and Metabolic Disease
Organiser: The Hong Kong Medical Association
Speaker: Dr Normani Nor CHAN | HKMA CME Dept
Tel: 3108 2507
1 CME Point |
| **29 WED** | 2:00 PM | **Zoom Live**
The HKMA District Health Network (Central, Western & Southern) CME Lecture – Diagnosis and Management of Common Skin Infections in Primary Care
Organiser: The HKMA District Health Network
Speaker: Dr HO King-man |
| 7:00 PM | **Certificate Course in Cardiology 2023**
Organiser: The Federation of Medical Societies of Hong Kong
Speaker: Dr Harry George MONG | Ms Vienna LAM
Tel: 2527 8998 |
| **30 THU** | 2:00 PM | **In-person**
The HKMA District Health Network (Hong Kong East) CME Lecture in Physical Attendance Mode - Changing Paradigms in Hyperlipidemia Management: What are the Available Evidence in CV Risk Reduction and Long Term Safety?
Organiser: The HKMA District Health Network
Speaker: Dr CHEUNG Chi-yueung
Venue: Wanchai Premises, 5/F, Duke of Windsor Social Building, 15 Hennessy Road, Wan Chai, Hong Kong |
| 7:00 PM | **Certificate Course in Ophthalmology 2023 - Module 2**
Organiser: The Federation of Medical Societies of Hong Kong
Speaker: Dr Frank Hiu-ping LAI, Dr Danny Siu-chun NG | Ms Vienna LAM
Tel: 2527 8998 |
Answers to Dermatology Quiz

Answers:

1. The clinical picture is most compatible with Pityriasis rubra pilaris (PRP). Other differential diagnoses that must be excluded include Psoriasis vulgaris, Cutaneous T-Cell Lymphoma, Erythroderma (Exfoliative Dermatitis), and rarely Erythrokeratoderma variabilis progressiva.

Pityriasis rubra pilaris is a chronic papulo-squamous disease of unknown aetiology. The familial type (autosomal dominant inheritance) has a gradual onset, whereas the acquired form has an acute onset. Judging from the clinical features, this patient has Type I classic adult PRP, which is characterized by rapid onset of well demarcated reddish "orange tinted" scaly plaques, palmoplantar keratoderma with painful fissures and keratotic follicular papules commonly seen on the dorsum of proximal phalanges, wrists and elbows.

This is the most common form of PRP, accounting for over 50% of all cases. The disease typically spreads in a craniocaudal direction. It may progress to Erythroderma with characteristic distinct areas of uninvolved skin, so called "Islands of sparing" (Fig.2). Nail and mucosal lesions may occur.

2. Diagnosis is usually based on a correlation between clinical and histopathological findings. Skin biopsy, therefore, should be done. Though the histopathological findings are not diagnostic, they help to exclude other differential diagnoses.

3. Topical therapies often have limited effect in view of the extensiveness and refractoriness of PRP. Topical corticosteroids and emollients may relieve symptomatic but have little long-term therapeutic effect. Other agents like calcipotriol and tazarotene have equivocal effects. Phototherapy, in general, is unsatisfactory as compared to its use in Psoriasis, similar to the use of methotrexate. Oral retinoids such as acitretin might be useful when combined with phototherapy. In children, oral isotretinoin has been tried with good efficacy. In recent years, the use of biologics targeting tumour necrosis factor-alpha, interleukins 12 and 23, 17 and 23 had been reported, but so far, there is no formal approval for their use.

4. In general, the familial form of the disease may be persistent throughout life. The acquired form, however, may resolve spontaneously within 1 - 3 years. The Type I classic adult PRP has the best prognosis. It had been reported that 80% of patients have remission in an average of 3 years.

Dr CHONG Lai-yin
MBBS(HK), FRCP(Lond, Edin, Glasg), FHKCP, FHKAM(Med)
Specialist in Dermatology & Venereology

The Federal Medical Societies of Hong Kong

The Hong Kong Medical Association

The HKFMS Foundation Limited

Hong Kong Medical Organisation

Dr CHONG Lai-yin

Specialist in Dermatology & Venereology
Joint Annual Scientific Meeting 2023
10 December 2023 • Sunday

CME Accreditation in Progress

Highlights

• Using of Cryomodulation and Exosomes with RF Microneedling
• Personalized Treatment for Atopic Dermatitis
• Traditional Chinese Medicine for Psoriasis and Eczema
• Advances in Paediatric Dermatology
• Pearls in Dermatological Investigation and Practice

Registration Fee

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HKCD, HKSPD, HKSDV member</td>
<td>Waived</td>
</tr>
<tr>
<td>Non-member</td>
<td>HK$550</td>
</tr>
</tbody>
</table>

Registration Deadline

30 November 2023 (Thursday)

Meeting Secretariat

MIMS (Hong Kong) Limited
Tel: (852) 2155 8557
Fax: (852) 2559 6910
E-mail: mandy.choi@mims.com

Registration information

www.hkcderm.org/cme-calendar/
Choose JANUVIA® with CONFIDENCE*

Because time matters.`^`

ONLY 1/3

T2DM patient typically achieved HbA1c target by 18 weeks on metformin monotherapy as demonstrated in the study**

Primary Endpoint: At week 18, mean change from baseline HbA1c was -2.4% for sitagliptin/metformin FDC and -1.8% for metformin monotherapy (p < 0.001).\(^3\)

Study Design: This double-blind study (3-week Phase A, and 12-week Phase B) randomized T2DM naive patients (defined as not on ADA therapy within the 6 months or longer preceding the screening visit) with T2DM (mean baseline hemoglobin A1c [HbA1c] 8.1% ± 1.3%) to sitagliptin/metformin (50/500) mg bid or metformin 500 mg bid (tripled over 6 weeks to achieve maximum dose of sitagliptin/metformin 150/1000 mg bid or metformin 1500 mg bid). Results of the primary endpoint were HbA1c reductions from baseline at the end of Phase A1 were reported in the study.\(^1\)

FIBA was mean baseline was 8.2%.\(^1\) The conclusions for treatment continuance plan for patients not meeting treatment goals should be based on the patient's needs and circumstances.

JANUVIA, JANUMET, JANUMET XR are Sulfonylurea Safety Information

JANUVIA (sitagliptin phosphate) is indicated as an adjunct to diet and exercise to improve glycemic control in patients with type 2 diabetes mellitus as monotherapy in combination with metformin, or in a fixed-dose combination, or a sulfonylurea and metformin, or in a fixed-dose combination, or in a combination of metformin and/or sulfonylurea.\(^1\) JANUMET XR (sitagliptin phosphate/metformin XR extended release) is indicated as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus when treatment with both sitagliptin and metformin is appropriate.\(^1\) JANUMET (sitagliptin phosphate/metformin HCl) is indicated as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus when treatment with both sitagliptin and metformin is appropriate.\(^1\) JANUMET XR and JANUMET XR are contraindicated in patients who are hypersensitive to any component of these products and who should not be used in patients with pancreatitis, type 1 diabetes, acute or chronic metabolic acidosis, or lactate acidosis, or for the treatment of diabetic ketoacidosis.\(^1\)

\(^1\) Concomitant use with sulfonylurea, fixed-dose combination, or a combination of metformin and/or sulfonylurea.\(^1\) JANUVIA, JANUMET, JANUMET XR have been reported with severe hypersensitivity reactions including anaphylaxis, angioedema, and urticaria.\(^1\) As it is recommended to use with metformin, caution should be exercised when treating patients with diabetes mellitus, or those who have a history of pancreatitis.\(^1\) Hypoglycemia has been observed when sitagliptin and metformin.\(^1\) Hypoglycemia has been observed with sitagliptin and metformin.\(^1\)

\(^1\) WebMD Dr.鹹

\(^2\) WebMD Dr.鹹

\(^3\) WebMD Dr.鹹

\(^4\) WebMD Dr.鹹

\(^5\) WebMD Dr.鹹

\(^6\) WebMD Dr.鹹

\(^7\) WebMD Dr.鹸